SUPPLEMENTARY MATERIALS

Search strategies for PubMed

("diabetes distress" OR "diabetes-specific distress") AND ("Diabetes Mellitus, Type 2"[MeSH] OR "type 2 diabetes" OR "T2DM" OR "type II diabetes" OR "T2D") AND ("South Asia" OR "India" OR "Bangladesh" OR "Bhutan" OR "Maldives" OR "Nepal" OR "Pakistan" OR "Sri Lanka")

•

Supplementary Figure 1 Funnel plot for the studies included in the meta-analysis. A: Total diabetes distress; B: Emotional burden; C: Regimen-related distress; D: Interpersonal distress; E: Physician-related distress.

Supplementary Figure 2 Meta-regression for the prevalence of diabetes distress. A: The year of publication; B: Sample size; C: Proportion of female subjects; D: Mean age; E: Mean duration of diabetes; F: Proportion of insulin users; G: Mean glycated hemoglobin; H: Proportion of study subjects with diabetic complications.

Supplementary Table 1 The summary of the excluded studies

Ref.	Country	Sampl	Reason of exclusion	Main findings
		e size		
Mohsin et al.,	United	414	The study was	Frequencies of high total, emotional burden,
2025 [58]	States of		conducted among	physician-related, and regimen-related distress
	America		immigrants of south	were 15.9%, 25.9%, 6.2%, and 21.9%,
			Asian descent living in	respectively.
			New York City.	
Naidu et al., 2020	India	250	Included patients with	Frequencies of high total distress, emotional
[59]			both T1D and T2D.	burden, physician-related, regimen-related,
				and interpersonal distress were 64.4%, 46.6%,
				13.4%, 21.6, and 18.4%, respectively.
Batool et al., 2018	Pakistan	200	- Included patients	Patients with T2D have more emotional burden
[60]			with both T1D and	and poorer psychological well-being than
			T2D.	those with T1D.
			- Did not report the	
			frequency of DD.	

Chittem et al., India 92	Did not report the	Increased number of children, personal control
2019 [61]	frequency of DD.	and illness-related concern were associated
		with increased levels of diabetes-related
		emotional distress.
Fernandes et al. India 131	Did not report the	The overall score for the diabetic distress was
2019 [62]	frequency of DD.	1.75
Jennings et al., Banglad 48	Did not report the	Differing patient and practitioner
2024 [63] esh and	frequency of DD.	understandings of distress/depression, high
Pakistan		levels of stigma for mental health and a lack of
		awareness and training on treating depression.
Joseph et al., 2023 India 205	Did not report the	Neuropathy, coronary artery disease, diabetes
[64]	frequency of DD.	foot, and retinopathy were related to
		emotional-related issues. Diabetes foot
		complications were related to regimen-related
		distress.

Kausar et al., 2013 Pakistan 100	Did not report the	Women had more emotional distress than men.
[65]	frequency of DD.	Men perceived diabetes-related risk more than
		women.
Niazi et al., 2017 Pakistan 180	Did not report the	Emotional distress was negatively related to
[66]	frequency of DD.	self-care activities. There was a negative
		relationship between patient-physician trust
		and diabetes related emotional distress.
Perveen et al. Pakistan 280	Did not report the	Diabetic distress had negative relationship
2023 [67]	frequency of DD.	with health-related quality of life while having
		a positive correlation with insulin dependency.
Rauf et al., 2016 Pakistan 96	Did not report the	Significant gender difference on the variable of
[68]	frequency of DD.	perceived stress; females scored higher than
		males.
Sadiq et al., 2017 Pakistan 120	Did not report the	Diabetes distress, emotional burden, and
[69]	frequency of DD.	interpersonal distress significantly predicted
		psychological distress. Additionally, a
		significant gender difference was found in

		respect to diabetic distress, regimen-related
		distress, and interpersonal distress.
Sharma et al., India	408	Did not report the The T2-DDAS is a valid and reliable tool for
2024 [70]		frequency of DD. assessing DD in Indian patients with T2D.
Sheikh et al., 2024 Pakistan	493	Did not report the PAID scale encompassed the primary risk
[71]		frequency of DD. factors associated with the emergence of
		emotional issues, food related challenges,
		insufficient social support, and problems in
		disease management. On the other hand, DDS
		only addressed a limited understanding of
		these risk factors.
Soini et al., 2016 India	140	Did not report the Men had higher DD score than women. DD
[72]		frequency of DD. score was lower in those who exercised
		regularly than those did not exercise.
Usha et al. 2017 India	250	Did not report the DD was associated with poor glycemic control.
[73]		frequency of DD.

DD, Diabetes distress; DDS, Diabetes distress scale, PAID, Problem Areas In Diabetes; T1D, Type 1 diabetes; T2D, Type 2 diabetes; T2-DDAS, Type 2 Diabetes Distress Assessment System.

Supplementary Table 2 Joanna Briggs Institute critical appraisal checklist for analytical cross-sectional studies

Ref.	Were	Were	Was the	Were	Were	Were	Were	Was
	the	the	exposur	objective,	confoundi	strategies	the	appropria
	criteria	study	e	standard	ng factors	to deal	outcome	te
	for	subjects	measure	criteria	identified?	with	S	statistical
	inclusio	and the	d in a	used for		confoundi	measure	analysis
	n in the	setting	valid	measureme		ng factors	d in a	used?
	sample	describe	and	nt of the		stated?	valid	
	clearly	d in	reliable	condition?			and	
	defined	detail?	way?				reliable	
	?						way?	
Akter et al.,	Yes	Yes	Yes	Yes	No	No	Yes	Yes
2022 [21]								

Islam et al.,	Yes	Yes	Yes	Yes	No	No	Yes	Yes
2013 [22]								
Kamrul-	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Hasan et al.,								
2022 [23]								
Kamruzzama	Yes							
n et al., 2024								
[24]								
Sultana et al.,	Yes							
2022 [25]								
Akshatha et	Yes							
al., 2024 [26]								
Alwani et al.,	Yes							
2024 [27]								
Anjali et al.,	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2024 [28]								

Burman et al.,	Yes							
2021 [29]								
Gahlan et al.,	Yes							
2018 [30]								
Gupta S et al.,	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2022 [31]								
Gupta SK et	Yes							
al., 2022 [32]								
Kaur et al.,	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2024 [33]								
Kumar et al.,	Yes							
2017 [34]								
Mahala et al.,	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2024 [35]								
Nadig et al.,	Yes	Yes	Yes	Yes	No	No	Yes	Yes
2022 [36]								

Nagabhusha	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
na et al., 2021								
[37]								
Naik et al.,	Yes							
2024 [38]								
Natesan et al.,	Yes	Yes	Yes	Yes	No	No	Yes	Yes
2016 [39]								
Panda et al.,	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2022 [40]								
Patra et al.,	Yes							
2021[41]								
Pinto et al.,	Yes	Yes	Yes	Yes	No	No	Yes	Yes
2022 [42]								
Purushottam	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
an et al., 2024								
[43]								

Rana et al., Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2023 [44]							
Ranjan et al., Yes	Yes	Yes	Yes	No	No	Yes	Yes
2023 [45]							
Ratnesh et al., Yes	Yes						
2020 [46]							
Roy et al., Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2018 [47]							
Sasi et al., Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2013 [48]							
Sumana et al., Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2021 [49]							
Talwar et al., Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2022 [50]							
Todalabagi et Yes	Yes	Yes	Yes	No	No	Yes	Yes
al., 2024 [51]							

Verma et al., Yes	Yes	Yes	Yes	No	No	Yes	Yes
2022 [52]							
Vidya et al., Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2021 [53]							
Arif et al., Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2018 [54]							
Tahir et al., Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2022 [55]							
Samarathung Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
a et al., 2023							
[56]							
Vithiya et al., Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
2023 [57]							

Supplementary Table 3 Egger's test[20]

Linear regression test of funnel plot asymmetry

Total distress	Test result: $t = 0.32$, $df = 35$, p-value = 0.7492
	Bias estimate: 0.7819 (SE = 2.4267)
	Details:
	- multiplicative residual heterogeneity variance (tau $^2 = 39.3232$)
	- predictor: standard error
	- weight: inverse variance
Emotional burden	Test result: t = 0.54, df = 21, p-value = 0.5979
	Bias estimate: 1.5280 (SE = 2.8532)
	Details:
	- multiplicative residual heterogeneity variance (tau $^2 = 30.9353$)
	- predictor: standard error
	- weight: inverse variance
Regimen-related distress	Test result: $t = 0.60$, $df = 20$, p-value = 0.5524
	Bias estimate: 2.0632 (SE = 3.4142)
	Details:
	- multiplicative residual heterogeneity variance (tau 2 = 44.1801)
	- predictor: standard error

	- weight: inverse variance
Interpersonal distress	Test result: $t = -0.48$, $df = 21$, p-value = 0.6353
	Bias estimate: -1.7745 (SE = 3.6866)
	Details:
	- multiplicative residual heterogeneity variance (tau 2 = 55.0015)
	- predictor: standard error
	- weight: inverse variance
Physician-related distress	Test result: t = -2.63, df = 21, p-value = 0.0156
	Bias estimate: -6.7049 (SE = 2.5491)
	Details:
	- multiplicative residual heterogeneity variance (tau $^2 = 32.5215$)
	- predictor: standard error
	- weight: inverse variance