


Supplementary Figure 1 Some concerns about bias were also identified in all three parallel-group RCTs, which stemmed from deviations from the intended interventions. A: Risk of bias summary. Review authors' judgments about each risk of bias item for each included parallel-group randomized controlled trials using the Cochrane risk of bias tool for randomized trials version 2; B: Risk of bias graph. Review authors' judgments about each risk of bias item presented as percentages across all included studies.

Supplementary Figure 2 All nine single-arm studies exhibited significant risk of bias, mainly due to confounding bias, as assessed by the Risk of Bias in Non-randomized Studies of Interventions tool. A: Risk of bias summary. Review authors'

judgments about each risk of bias item for each included single-arm studies using the Risk of Bias in Non-randomized Studies of Interventions version 2; B: Risk of bias graph. Review authors' judgments about each risk of bias item presented as percentages across all included studies.

Search strategy

PubMed: 2 2 ("type diabetes mellitus"[Title/Abstract] OR "type diabetes"[Title/Abstract] OR "non-insulin dependent diabetes mellitus"[Title/Abstract] OR "T2DM"[Title/Abstract] OR "T2D"[Title/Abstract]) **AND** ("automated delivery"[Title/Abstract] insulin OR "closed loop insulin"[Title/Abstract] OR "artificial pancreas"[Title/Abstract] OR "hybrid closed loop"[Title/Abstract] OR "continuous subcutaneous insulin infusion"[Title/Abstract] OR "insulin pump" [Title/Abstract]).

Scopus: (TITLE-ABS-KEY (type 2 diabetes AND mellitus) OR TITLE-ABS-KEY (type 2 diabetes) OR TITLE-ABS-KEY (non-insulin AND dependent AND diabetes AND mellitus) OR TITLE-ABS-KEY (t2dm) OR TITLE-ABS-KEY (t2d) AND TITLE-ABS-KEY (automated AND insulin AND delivery) OR TITLE-ABS-KEY (closed AND loop AND insulin) OR TITLE-ABS-KEY (artificial AND pancreas) OR TITLE-ABS-KEY (hybrid AND closed AND loop) OR TITLE-ABS-KEY (continuous AND subcutaneous AND insulin AND infusion) OR TITLE-ABS-KEY (insulin AND pump)).

Supplementary Table 1 Summary of the excluded studies

Ref.	Reason for	Study design	Summary of outcomes
	exclusion		
Lakshman	Letter to the	Cross-over	Mean glucose levels fell significantly from weeks 1-
et al[38],	editor and	randomized trial.	2 to weeks 5-6 of closed-loop (9.3-8.8 mmol/L, $P =$
2023	post hoc	Sample size: 25.	0.04) and this was sustained in weeks 7-8.
	analysis of	Aimed to characterize	Associated with this improvement in glucose
	the study,	changes in insulin	control, relative insulin requirements peaked at
	Daly et	requirements	weeks 3-4 (108% of 8-week period average)
	al[25], 2023	associated with	followed by a non-significant trend to decrease in
		improvements in	weeks 5-6 and 7-8 (down to 104% and 91% of 8-week
		glycemic control	period average, respectively, $P = 0.08$). Absolute
		during the eight-week	total insulin dose [median (interquartile range)]
		closed loop period	peaked at 133 (76, 217) units at weeks 3-4, falling to
			122 (64, 197) units at 5-6 weeks and 103 (61, 160)
			units by weeks 7-8 (a decrease of 8% and 23%,
			respectively)
Davis et	Report of	Single-arm	During the initial 8-week study, participants
al[39],	the	prospective study.	achieved a decrease in percentage of
2025	extension	Sample size: 24.	time $\geq 250 \text{ mg/dL}$ from $27.4\% \pm 21.0\%$ to
	phase of the	Aimed to build	$10.5\% \pm 8.8\%$ ($P < 0.0001$), which further decreased
	study,	confidence in the	to $9.7\% \pm 9.2\%$ during the extension phase (P
	Davis et	durability of these	= 0.0002 vs standard therapy). Percentage of
	al[31], 2023	results over a longer	time < 54 mg/dL remained low from standard
		period of use, we	therapy through extension [median (interquartile
		evaluated the safety	range)] 0.00% (0.00%, 0.06%) vs 0.02% (0.00%,
		and effectiveness of	0.05%), $P > 0.05$). HbA1c decreased by 1.6% \pm 1.2%
		the Omnipod 5	$(15.5 \pm 13.1 \text{ mmol/mol}, P < 0.0001)$ and time in
		automated insulin	range increased by 22.4% \pm 19.2% ($P < 0.0001$) from
		delivery System for	standard therapy through extension. No significant
		an additional	change in body mass index or total daily insulin

Supplementary Table 2 Review authors' judgments about each risk of bias item for each included randomized crossover trials using the Cochrane risk of bias tool for randomized trials version 2

Ref.	Domain 1:	Domain S:	Domain 2:	Domain 3:	Domain 4:	Domain 5:	Overall
	Risk of	Risk of	Risk of bias	Risk of	Risk of	Risk of bias	
	bias	bias	due to	bias due to	bias in	in selection	
	arising	arising	deviations	missing	measurem	of the	
	from the	from	from the	outcome	ent of the	reported	
	randomiza	period and	intended	data	outcome	result	
	tion	carryover	interventions				
	process	effects					
Borel et	Low	Low	Some	Low	Low	Low	Some
al[23],			concerns				concerns
2024							
Boughto	Some	Low	Low	Low	Low	Low	Some
n et	concerns						concerns
al[24],							
2021							
Daly et	Low	Some	Some	Low	Low	Low	Some
al[25],		concerns	concerns				concerns
2023							

Supplementary Table 3 Summary of findings table

Outcomes	Anticipated absolute eff	Number of Certainty of		
	Risk with control	Risk with automated insulin delivery	participants (studies)	the evidence (GRADE)
HbA1c (%)	The mean HbA1c at the	MD 0.89% lower	718 (4 RCTs)	$\oplus \oplus \bigcirc \bigcirc$
	end of the study was	(1.32% lower to 0.46%		Low ²

-	8.31%	lower)	
TIR (3.9-10	The mean TIR at the end	MD 19.25% higher 480 (5 RCTs)	$\Theta \Theta \Theta \bigcirc$
mmol/L)	of the study was 47.78%	(11.43% higher to	Moderate ³
		27.06% higher)	
TAR > 10	The mean TAR > 10	MD 19.48% lower 480 (5 RCTs)	$\Theta\Theta\Theta$
mmol/L	mmol/L at the end of	(27.14% lower to	Moderate ³
	the study was 51.92%	11.82% lower)	
TAR > 13.9	The mean TAR > 13.9	MD 8.33% lower 428 (4 RCTs)	$\oplus \oplus \oplus \bigcirc$
mmol/L	mmol/L at the end of	(12.89% lower to	Moderate ³
	the study was 16.54%	3.77% lower)	
TBR < 3.9	The mean TBR < 3.9	MD 0.07% lower 480 (5 RCTs)	$\oplus \oplus \oplus \oplus$
mmol/L	mmol/L at the end of	(0.21% lower to 0.08%	High
	the study was 0.43%	higher)	
TBR < 3	The mean TBR < 3	MD 0.01% lower 480 (5 RCTs)	$\oplus \oplus \oplus \oplus$
mmol/L	mmol/L at the end of	(0.03% lower to 0.02%	High
	the study was 0.09%	higher)	
Mean sensor	The mean mean sensor	MD 1.21 mmol/L 786 (5 RCTs)	$\oplus \oplus \bigcirc\bigcirc$
glucose	glucose at the end of the	lower (1.93 mmol/L	Low ²
(mmol/L)	study was 10.24	lower to 0.49 mmol/L	
	mmol/L	lower)	
1001 11		/ 1: 0E0/ CT\ : 1 1 .1	1 . 1 .

¹The risk in the intervention group (and its 95%CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

GRADE Working Group grades of evidence: (1) High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; (2) Moderate certainty: We are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; (3) Low certainty: Our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect; and (4) Very low certainty: We have very little confidence in the effect estimate: the true effect is likely to be

²High heterogeneity among the studies is present.

³Moderate heterogeneity among the studies is present.

substantially different from the estimate of effect. HbA1c: Glycated hemoglobin; MD: Mean difference; RCTs: Randomized controlled trials; TAR: Time above range; TBR: Time below range; TIR: Time in range.

Supplementary Table 4 Leave-one-out sensitivity analysis for the main outcomes with moderate and high heterogeneity in the meta-analysis

Variable	Study omitted	Mean difference (95%CI)	P value	I ² (%)
Change from baseline in	Daly et al[25], 2023	-0.74 (-1.14 to 0.33)	0.0004	78
glycated hemoglobin	Kadva et al[26], 2025	-1.11 (-1.65 to 0.57)	< 0.0001	75
(%)	Reznik et al[27], 2014	-1.03 [-1.80 to 0.25)	0.009	88
	Reznik et al[28], 2024	-0.76 (-1.19 to 0.33)	0.0005	82
Time in range 3.9-10	Borel <i>et al</i> [23], 2024	21.00 (10.35-31.64)	0.0001	80
mmol/L (%)	Boughton <i>et al</i> [24], 2021	20.57 (10.86-30.29)	< 0.0001	81
	Daly et al[25], 2023	14.79 (9.86-19.72)	< 0.00001	31
	Kadva et al[26], 2025	21.84 (12.30-31.39)	< 0.00001	69
	Reznik et al[28], 2024	17.86 (9.37-26.35)	< 0.0001	76
TAR > 10 mmol/L (%)	Borel <i>et al</i> [23], 2024	-21.34 (-31.86 to 10.82)	< 0.0001	80
	Boughton <i>et al</i> [24], 2021	-20.98 (-30.42 to 11.53)	< 0.0001	80
	Daly et al[25], 2023	-14.88 (-19.29 to 10.48)	< 0.00001	20
	Kadva et al[26], 2025	-21.93 (-31.92 to 11.93)	< 0.0001	72
	Reznik et al[28], 2024	-18.14 (-26.48 to 9.80)	< 0.0001	76
TAR > 13.9 mmol/L (%)	Borel <i>et al</i> [23], 2024	-11.70 (-18.93 to 4.46)	0.0002	64
	Daly et al[25], 2023	-6.99 (-11.56 to 2.41)	0.003	72
	Kadva et al[26], 2025	-11.13 (-20.85 to 1.40)	0.02	80
	Reznik et al[28], 2024	-6.70 (-10.57 to 2.83)	0.0007	66
Mean sensor glucose	Borel <i>et al</i> [23], 2024	-1.38 (-2.30 to 0.45)	0.004	87
(mmol/L)	Boughton <i>et al</i> [24], 2021	-1.16 (-1.98 to 0.35)	0.005	86
	Daly et al[25], 2023	-0.77 (-1.23 to 0.32)	0.0009	57
	Kadva et al[26], 2025	-1.37 (-2.48 to 0.25)	0.02	87
	Reznik et al[27], 2014	-1.51 (-2.39 to 0.64)	0.0007	79
Coefficient of variation	Borel <i>et al</i> [23], 2024	1.55 (0.01-3.10)	0.05	30

of glucose (%)		Boughton <i>et al</i> [24], 2021	1.20 (-1.29 to 3.70)	0.35	76
		Daly et al[25], 2023	0.32 (-1.60 to 2.23)	0.75	65
		Kadva et al[26], 2025	1.12 (-1.89 to 4.12)	0.47	74
		Reznik et al[28], 2024	0.53 (-1.60 to 2.66)	0.62	72
Total daily dose	of	Borel <i>et al</i> [23], 2024	-13.22 (-26.85 to 0.41)	0.06	54
insulin (U)		Boughton <i>et al</i> [24], 2021	-4.57 (-25.85 to 16.70)	0.67	79
		Daly et al[25], 2023	-9.92 (-25.96 to 6.12)	0.23	72
		Kadva et al[26], 2025	-1.39 (-24.42 to 21.65)	0.91	78
		Reznik et al[27], 2014	0.31 (-19.56 to 20.18)	0.98	71
		Reznik et al[28], 2024	-3.25 (-21.09 to 14.60)	0.72	78

TAR: Time above range.