Supplementary Figure 1 BCL10 is highly expressed in colorectal cancer and associated with poor patient prognosis A: Based on HPA data, the expression profile of BCL10 across various tissues is illustrated. B: Based on HPA data, the expression profile of BCL10 across various tumors is illustrated. C: Differential BCL10 expression between the tumor/normal group (TCGA-GTEx). D: Removing the null value (NA)) Protein level BCL10 expression difference (tumor/normal group). E: Relative expression levels of BCL10 mRNA and protein in NCM-460, SW480, SW620, and HCT-116 cell lines. bP < 0.01. cP < 0.001. F: Association between BCL10 and survival of patients with GSE106584. G: Performing Chi-Square test on each clinical trait in the high/Low BCL10 expression group. H: ROC curves evaluate the diagnosis performance of BCL10 expression on tumor/normal groups.

Supplementary Figure 2 Relative expression levels of BCL10 and DLAT proteins A: Relative expression levels of BCL10 mRNA and protein following lentivirus-mediated knockdown with three distinct shRNAs in SW480 and SW620 cell lines; cP < 0.001.B: Quantitative analysis of DLAT mRNA and protein expression after siRNA-mediated knockdown using three distinct sequences in SW480 and SW620 colorectal cancer cell lines. cP < 0.001.

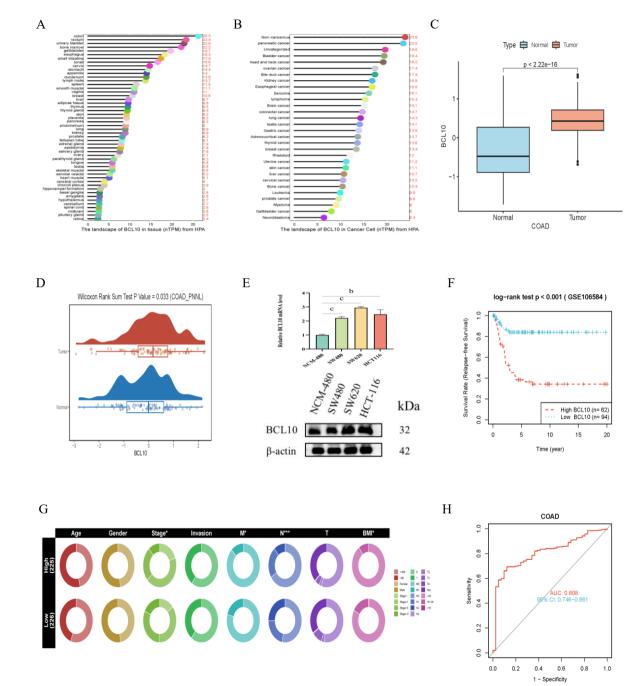
Supplementary Figure 3 CCK-8 proliferation assay confirmed that overexpression or knockdown of BCL10 significantly affected the proliferation activity of CRC cells.

Supplementary Figure 4 A: Evaluation of cell viability using CCK-8 assay after 24-hour exposure to gradient concentrations of elesclomol-Cu in SW480 and SW620 cell lines, which induced cuproptosis cell death. B: The cytotoxic effects of 200 nM elesclomol-Cu were evaluated at 24, 48, and 72-hour time points using CCK-8 assay in SW480 and SW620 colorectal cancer cell lines, where cuproptosis was successfully induced.

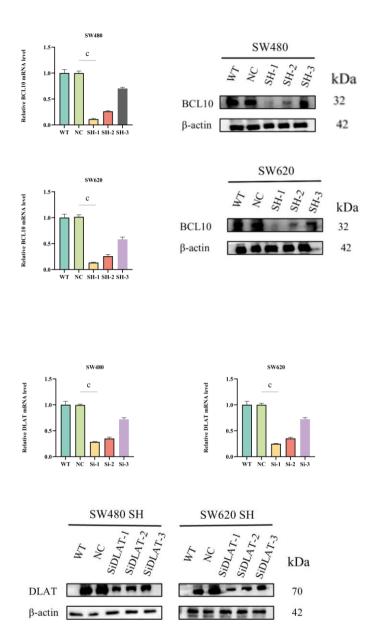
Supplementary Figure 5 A: The expression level of DLAT in clinical colon adenocarcinoma (COAD) tissue samples was significantly lower than that in normal tissues. B: The expression level of DLAT in COAD adjacent tissues was significantly lower than that in normal tissues. C: The low expression level of DLAT is significantly correlated with poor prognosis in patients; D, F: Cuproptosis was induced in human

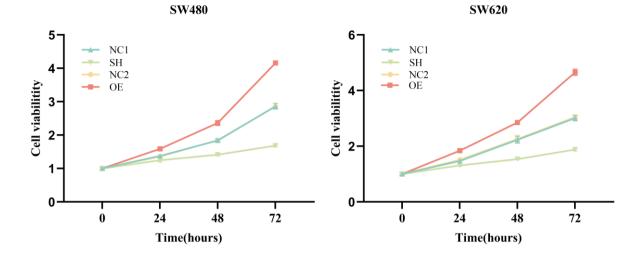
colorectal carcinoma cell lines (SW480 and SW620) using a copper concentration gradient (50-800nM). Subsequent CCK-8 viability assays revealed that DLAT knockdown (siDLAT) significantly attenuated copper-induced cell death. **Supplementary Figure 6. Negative controls for immunohistochemistry (IHC) assays.**

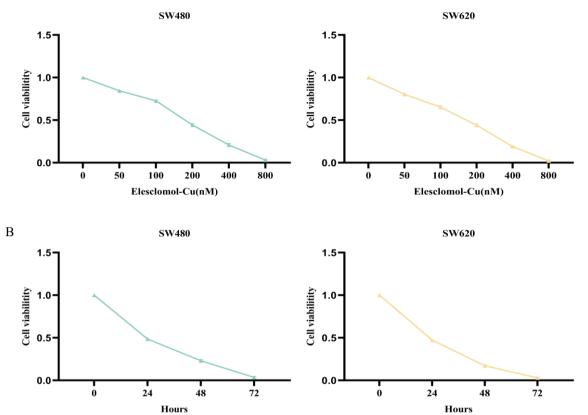
- (A) Negative control for MYC IHC (Figure 1D) using isotype-matched IgG.
- (B) Negative control for Ki67 IHC (Figure 1D) with primary antibody omitted.
- (C) Negative control for BCL10 IHC (Figure 6H) using adjacent normal colon tissue.
- (D) Negative control for DLAT IHC (Figure 6H) with isotype-matched IgG.
- (E) Negative control for p65 IHC (Figure 6H) using PBS instead of primary antibody.
- (F) Negative control for p-p65 (Ser536) IHC (Figure 6H) with primary antibody omitted.
- (G) Negative control for DLAT IHC (Supplementary Figure 7B) using isotype-matched IgG.

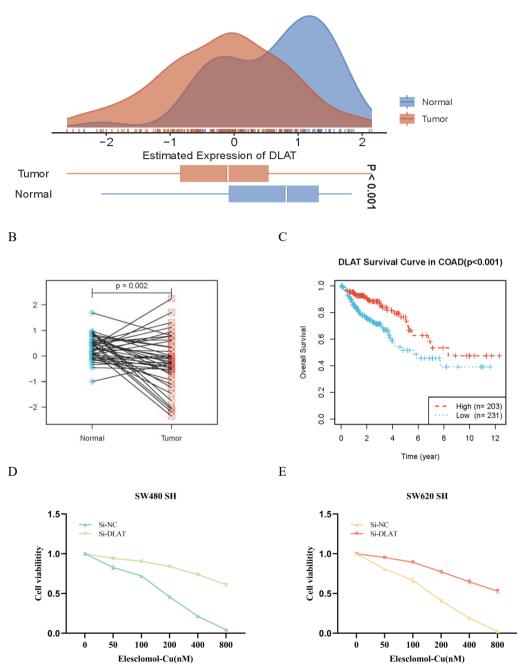

All panels: Scale bars = $50 \, \mu m$. No specific staining was observed in any negative control, confirming antibody specificity.

Supplementary Figure 7 A: The ALT and AST levels. B: Mice liver and kidney H&E sections and tumor DLAT immunohistochemistry.


Supplementary Table 1 Primers list


Gene	Primers
L13-F	CGGACCGTGCGAGGTAT
L13-R	CACCATCCGCTTTTTCTTGTC
DLAT-F	CGGAACTCCACGAGTGACC
DLAT-R	CCCCGCCATACCCTGTAGT
BCL10-F	GTGAAGAAGGACGCCTTAGAAA
BCL10-R	TCAACAAGGGTGTCCAGACCT
FDX1-F	TGCCAGATCGAGCATGTCATT
FDX1-R	TGCCAGATCGAGCATGTCATT
LIAS-F	GTATGTGAGGAAGCTCGATGTC
LIAS-R	CACCCATCAACATGATCGTGG
GLS-F	AGGGTCTGTTACCTAGCTTGG
GLS-R	ACGTTCGCAATCCTGTAGATTT
DLD-F	CACTGCTACGAAAGCTGATGG
DLD-R	TAACTTCTGAACCCGTGGCTA
PDHB-F	AAGAGGCGCTTTCACTGGAC
PDHB-R	ACTAACCTTGTATGCCCCATCA
PDHA-F	TGGTAGCATCCCGTAATTTTGC
PDHA-R	ATTCGGCGTACAGTCTGCATC
CDKN2A-F	GGGTTTTCGTGGTTCACATCC
CDKN2A-R	CTAGACGCTGGCTCCTCAGTA
SLC31A1-F	GGGGATGAGCTATATGGACTCC
SLC31A1-R	TCACCAAACCGGAAAACAGTAG
DLST-F	GAACTGCCCTCTAGGGAGAC
DLST-R	AACCTTCCTGCTGTTAGGGTA
ATP7A-F	TGACCCTAAACTACAGACTCCAA
ATP7A-R	CGCCGTAACAGTCAGAAACAA


LIPT1-F	CCTCTGTTGTAATTGGTAGGCAT
LIPT1-R	CTGGGGTTGGACAGCATTCAG
ATP7B-F	GCCAGCATTGCAGAAGGAAAG
ATP7B-R	TGATAAGTGATGACGGCCTCT



В

