Three-in-one incidence of hepatocellular carcinoma, cholangiocellular carcinoma, and neuroendocrine carcinoma: A case report

Wu Y et al. A three-in-one carcinoma
Abstract

BACKGROUND
Primary hepatic neuroendocrine carcinoma (NEC) is rare, but a combination with hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) is extremely rare. To date, only four combination cases have been reported. The present stud describes the fifth patient.

CASE SUMMARY
A 32-year-old Chinese male with chronic hepatitis B was hospitalized for persistent upper abdominal pain; abdominal computed tomography (CT) examination detected a liver mass. The tumor was located in the 7th and 8th segments of the liver, and CT and magnetic resonance imaging (MRI) findings were consistent with the diagnosis of HCC. Laboratory examinations revealed alanine aminotransferase: 243 U/L, aspartate aminotransferase: 167 U/L, and alpha-fetoprotein: 4519 µg/L. Laparoscopic right lobe heptectomy was performed on the liver mass. Postoperative pathology showed low differentiation HCC plus medium and low differentiation CCA combined with NEC. One month after the surgery, the patient suffered from epigastric pain again. The liver metastasis was examined by CT, and tumor transcatheter arterial chemoembolization was performed. Consequently, the liver tumor was progressively increased and enlarged, and after one month, the patient died of ineffective treatment.

CONCLUSION
This is a rare case, wherein the tumor is highly aggressive, grows rapidly, and metastasizes in a short period. Imaging and laboratory tests can easily misdiagnose or miss the diagnosis; thus, the final diagnosis relies on pathology.

Key Words: Neuroendocrine carcinoma; Hepatocellular carcinoma; Mixed neuroendocrine neoplasm; Combined hepatocellular-cholangiocarcinoma; Cholangiocarcinoma; Cholangiocellular carcinoma; Case report

Core Tip: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer. However, the combination of HCC, cholangiocarcinoma, and neuroendocrine carcinoma exhibiting three differentiation pathways are extremely rare. This has been described previously only in four patients. We report a case of a similar tumor in a 32-year-old male. It was diagnosed according to the computed tomography and magnetic resonance imaging findings and histopathology. This study aimed to raise awareness and improve the treatment of the disease.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer (PLC), followed by cholangiocarcinoma (CCA). Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a tumor with both hepatocytic and biliary components. The incidence of cHCC-CCA among the other PLCs is 0.4%-14.2% [3]. Also, other unusual PLCs with combined components have been recorded. Tumors with an HCC and neuroendocrine carcinoma (NEC) differentiation have been published [3]. However, hepatocellular tumors showing three differentiation pathways are sporadic. The combination of HCC, CCA, and NEC differentiation has been described previously only in four patients. Herein, we reported another case of a similar tumor in a 32-year-old male. Therefore, this study aimed to increase cognition and improve the treatment of the disease.

CASE PRESENTATION

Chief complaints
A 32-year-old male patient was hospitalized (The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China) on August 29, 2021, due to pain in the right upper abdomen for 30 d.

History of present illness

The patient's symptoms started before 30 d, with repetitive right upper abdominal pain.

History of past illness

The patient presented hepatitis B 5 years ago and did not receive regular treatment.

Personal and family history

The patient had a smoking and drinking history of > 10 years: 15 cigarettes/d and about 100 mL wine/d. His parents were healthy and had no family history of cancer.

Physical examination

The abdomen was soft with tenderness in the right upper abdomen but no rebound pain and muscle tension. A mass of about 80 m × 80 m could be felt under the right costal margin of the liver; it was tough, tender, with a clear boundary, and did not move when touched.

Laboratory examinations

Alanine aminotransferase: 243 (normal range 9-50) U/L, aspartate aminotransferase: 167 (normal range 15-50) U/L, abnormal alpha-fetoprotein (AFP): 4519 (normal range < 9) μg/L, and normal carbohydrate antigen, carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) levels. Hepatitis B virus (HBV) DNA 2.327 × 10^2 (normal range < 1000) IU/mL, hepatitis B surface antigen 250 (normal range < 0.05) IU/mL, and hepatitis B core antibody 8.35 (normal range < 1) cutoff index.

Imaging examinations
The abdomen computed tomography (CT) displayed a mass of 81 mm × 83 mm in the 7th and 8th hepatic segments as a mild external protrusion. It showed inhomogeneous enhancement compared to the surrounding liver parenchyma in the arterial phase and low density with a clear portal border. Magnetic resonance imaging (MRI) with gadoxetate disodium (Eovist®) revealed a significant enhancement than the CT scan. Intriguingly, massive mixed signals were detected from the mass: A low signal on T1-weighted image (T1WI), a high signal on T2WI, multiple equal and low signals, and segmentation. Diffusion-weighted imaging (DWI) showed uneven high signal, apparent diffusion coefficient (ADC) images showed uneven low signal, and no signal reduction area was observed in the out-phase. In the enhanced arterial phase, the edge was slightly uneven, and the enhancement was weaker than that of the normal liver. In the delayed phase, the focus center and edge were significantly uneven, and the enhancement degree was higher than that of the normal liver, indicating gradually delayed enhancement (Figure 1). Chest CT, gastrofibroscopy, and colonoscopy did not find any evidence of another origin site in the examinations.

Further diagnostic work-up

Pathological and immunohistochemical examination results on the excised liver tissues after surgery (Figure 2) were as follows: CK (++), AFP (++), hepatocyte (++), CK19 (+), synaptophysin (Syn) (+), CD56 (+), catenin (+), vimentin (+), chromogranin A (CgA) (-), Glypican-3 (+), Ki-67 (60%+), vascular invasion (+), nerve invasion (-), no tumor involvement at the cutting edge of the liver, and the broken end of the gallbladder neck. According to the histopathological results and immunohistochemical features, this tumor included HCC, intrahepatic CCA (iCCA), and NEC.

FINAL DIAGNOSIS

The final diagnosis revealed low differentiation HCC plus medium and low differentiation CCA combined with NEC.
TREATMENT

With the consent of the patient and his family, he was treated with laparoscopic partial hepatic lobectomy and cholecystectomy by an experienced hepatobiliary surgeon. The intraoperative findings were as follows: A mass with a diameter of about 10 cm was located in the right lobe of the liver, protruding from the liver capsule; it was intact and had a clear boundary. The whole mass and the surrounding liver tissue, about 2 cm, and major blood vessels were resected.

One month post-surgery, the patient was hospitalized on October 20, 2021, due to epigastric pain. Abdominal enhanced CT and MRI suggested multiple metastases in the liver (Figure 3). In order to control tumor growth, the patient was treated with transarterial chemoembolization (TACE) to embolize the blood vessels supplying the tumor; also, oxaliplatin (150 mg), fluorouracil (1 g), and leucovorin (0.4 g) were administered. HBV infection was treated with entecavir (0.5 mg, once daily). Subsequently, the abdominal pain was relieved, and the patient was discharged from the hospital. However, he was treated again in our hospital on November 24, 2021 due to the aggravation of epigastric pain. Abdominal CT showed that liver metastases had increased and enlarged (Figure 3) with a maximum diameter of 62 m x 65 m.

OUTCOME AND FOLLOW-UP

The patient eventually died of liver failure in December 2021.

DISCUSSION

PLC is the fourth driving cause of cancer-related deaths worldwide, and the incidence is persistently rising in Western countries[4]. It is a heterogeneous tumor related to various hazard factors, clinical results, and histological and atomic features. Among these malignancies, HCC and iCCA are the most common cancers that represent the two extremes of primary malignancies. cHCC-CCA is a subset of liver neoplasms that might display hepatocytic and biliary separation. Compared to HCC and iCCA, these biphenotypic tumors are rarer, accounting for < 5% of all liver cancers[3]. Conversely,
the concurrent occurrence of HCC and NEC is rarer than the HCC plus CCA type in the liver because the rate of primary hepatic NEC is very rare as opposed to incidental intrahepatic metastasis of NEC. Interestingly, HCC, iCCA, and NEC are extremely rare, and only four cases have yet been reported (Table 1).

Neuroendocrine tumors are mainly localized in the gastrointestinal system and frequently metastasize to the liver[5]. Primary neuroendocrine tumors are exceptionally uncommon in the liver. The morphological synthesis of primary hepatic neuroendocrine tumors is hazy. Currently, there are two hypotheses explaining this phenomenon. One is that the stem cell forebody of malignant cells from another pernicious hepatic tumor separates into a neuroendocrine tumor. Another is that such tumors come from neuroendocrine cells in the intrahepatic bile conduit epithelium[6,7]. Primary neuroendocrine tumors with HCC in the liver are rare. HCC with carcinoid tumors was first documented in 1984[8]. The tumors are categorized into two classes: Collision and combined[9]. The collision sort tumors are recognized by fibrillar component, whereas the combined sort tumors have blended features and cannot be identified. Under the microscope, these tumors were divided into three sorts, transitional, intermediate, and isolated. In the transitional sort, the NEC and HCC components are blended in the transition zone, while in the middle sort, the intermediate component conveys both hepatocyte markers and neuroendocrine markers, blending with the NEC and HCC components, and in the separate sort, the two features appear autonomously. The first two types represent co-localization of neuroendocrine and non-neuroendocrine components[10]. Nonetheless, the link between HCC, iCCA, and NEC has not yet been detected. According to the classification of the two differentiated tumors, the patient had no obvious interval and hence belonged to mixed tumors.

Serum markers are utilized to evaluate liver tumors. Donadon \textit{et al.}[11] showed that the detection indicators of primary HCC, such as AFP, CEA, and carbohydrate antigen 19-9, have little value for the diagnosis of liver NEC. Specific immunohistochemical markers of NEC include NSE, CgA, Syn, CD57, and bombesin; those of HCC are HEPPAR-1 and
AFP, and for CCA are CK-7 and CK-19[3]. Stridsberg \textit{et al.}[12] demonstrated that serum CgA was an indicator for NEC diagnosis, with 87\%-100\% sensitivity and 92\% specificity. In addition, serum 5-hydroxytryptamine and 24-h urine 5-hydroxyindoleacetic acid also had high sensitivity and specificity for the diagnosis of the disease. In this patient, the immunohistochemistry staining of CK, AFP, hepatocyte, CK19, Syn, and CD56 was positive, which was consistent with the diagnosis of HCC, iCCA, and NEC.

Imaging examination is a crucial method to judge the quality of mass. Contrast-enhanced CT scan showed rich blood supply tumors for hepatic NEC, while on the plain scan, slightly low-density lesions with clear boundaries, uniformly enhanced smaller lesions, and irregular necrotic areas in larger lesions were observed. Moreover, the enhancement was “fast in and slow out”. The lesions in the arterial phase showed rosette and patchy enhancement, while those in the portal vein phase showed centripetal enhancement, and those in the delayed phase showed equal or slightly high-density and no enhancement in the necrotic area[13,14]. This was different from the rich blood supply and “fast in and fast out” enhancement of typical HCC. MRI is a valuable diagnostic method for HCC. T1WI exhibited a low-intensity signal, T2WI showed a slightly high-intensity signal, and dynamic enhancement scanning showed uneven images in the arterial phase, further enhancement in the portal vein phase, decreased enhancement in the delay phase, and low-intensity signal and annular capsule enhancement in the later stage[15]. The characteristics of this patient were consistent with the previous description. DWI showed high signal, and ADC image showed low signal, indicating limited diffusion and suggesting a malignant tumor.

Mixed tumors with three differentiation pathways are extremely rare, and therefore no meaningful conclusions could be derived with respect to the risk factors, the origin of the cells, prognosis, and treatment options. Previously, a case of a blended tumor with three separation pathways was reported in a young Caucasian male with no known identifiable hazard variables[16]. Another study described a patient with a history of hepatitis C[17]. Also, two Chinese male patients were positive for hepatitis
B[18]. In this case, the Chinese patient had a history of hepatitis B with long-term smoking and drinking, and 3/5 patients had hepatitis B, indicating that hepatitis B is a major risk factor for this disease (Table 2).

HCCs with NEC components are related to invasive behavior and unfavorable results. However, whether the HCC or the NEC component determines the prognosis of patients is yet to be clarified. Interestingly, the Ki-67 proliferation index of NEC is significantly higher than that of HCC. Additionally, lymph nodes or distant metastases are involved in NE; thus, the prognosis of primary HCC combined with primary NEC might be positively correlated with the NEC component. The more the NEC component, the worse the prognosis and the higher the probability of recurrence and metastasis. Although the leading treatment for mixed liver tumors is surgery, the other treatments include TACE, radioembolization, chemotherapy, or liver transplantation. The decisions to treat patients with adjuvant therapy and other alternatives are based on the assessment of the tumor with a poor prognosis. For example, Ki-67 proliferation index is a satisfactory indicator; a high value indicates a high risk of tumor invasion and recurrence. Our patient had Ki-67 > 60%, vascular invasion (+), and multiple metastases in the liver one month after surgery. Despite aggressive treatment, the patient had a very rapid disease progression that could be attributed to three differentiation pathways.

CONCLUSION

Herein, we reported a rare and easily misdiagnosed case, and several key points deserve close attention. First, clinical examination suggested HCC or other malignant tumors[19]. The patient was infected with HBV and had an alcohol history and abnormal AFP levels. The CT enhancement scans showed heterogeneous enhancement in the arterial and delayed phases. MRI showed a predominantly long T1 signal. The T1 enhancement scans showed mild enhancement in some lesions, while DWI showed a high signal, and ADC image showed a low signal in the center of the lesion. Postoperative pathology detected a blended neuroendocrine-non-neuroendocrine
neoplasm that was a crucial pathological determinant. Strikingly, a few cells were positive for NEC, iCCA, and HCC markers, indicating that a few “undifferentiated cells” were plastic amid the differentiation period, regardless of whether they were pernicious hepatic tumor cells or ancestral cells. Surgical resection is the preferred treatment for mixed liver tumors. The postoperative use of a combination of chemotherapy-based measures with other modalities might improve the prognosis of patients. In conclusion, the co-occurrence of HCC, iCCA, and NEC with high invasiveness, rapid growth, easy recurrence, and metastasis in a short duration is very rare. Imaging and laboratory tests could easily miss or misdiagnose the cancer, and thus, the final diagnosis relies on pathology. Therefore, additional case studies are required to elucidate the characteristics, diagnosis, and optimal therapy for HCC, iCCA, and NEC.
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
<th>Words</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aurélie Beaufrère, Julien Calderaro, Valérie Paradis.</td>
<td>"Combined hepatocellular-cholangiocarcinoma: An update", Journal of Hepatology, 2021</td>
<td>Crossref</td>
<td>66</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>Jianwei Lan, Deliang Guo, Xian Qin, Baiyang Chen, Quanyan Liu.</td>
<td>"Mixed Neuroendocrine Carcinoma and Hepatocellular Carcinoma: A Case Report and Literature Review", Frontiers in Surgery, 2021</td>
<td>Crossref</td>
<td>64</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>Gyu Ho Choi, Sun Young Ann, Soon Il Lee, Suk Bae Kim, Il Han Song.</td>
<td>"Collision tumor of hepatocellular carcinoma and neuroendocrine carcinoma involving the liver: Case report and review of the literature", World Journal of Gastroenterology, 2016</td>
<td>Crossref</td>
<td>53</td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>f6publishing.blob.core.windows.net</td>
<td></td>
<td>Internet</td>
<td>27</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>othes.univie.ac.at</td>
<td></td>
<td>Internet</td>
<td>26</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>www.jafron.com</td>
<td></td>
<td>Internet</td>
<td>13</td>
<td>1%</td>
</tr>
<tr>
<td>#</td>
<td>Reference</td>
<td>Exclusion Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>"Pediatric Neuroimaging", Springer Science and Business Media LLC, 2022</td>
<td>12 words — < 1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Hong Wang, Dan Yang, Yan Luo, Yulan Peng, Wenwu Ling. "Contrast-Enhanced Ultrasound Findings of Hepatocellular Carcinoma with Neuroendocrine Carcinoma: Case Report and Review of the Literature", Research Square, 2020</td>
<td>12 words — < 1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>www.wjgnet.com</td>
<td>12 words — < 1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exclude Quotes: ON
Exclude Bibliography: ON
Exclude Sources: < 12 words
Exclude Matches: < 12 words