World Journal of Clinical Cases

World J Clin Cases 2022 June 6; 10(16): 5124-5517
OPINION REVIEW
5124 Malignant insulinoma: Can we predict the long-term outcomes?
Cigrovski Berkovic M, Ulamec M, Marinovic S, Balen I, Mrzljak A

MINIREVIEWS
5133 Practical points that gastrointestinal fellows should know in management of COVID-19
Sahin T, Simsek C, Balaban HY

5146 Nanotechnology in diagnosis and therapy of gastrointestinal cancer
Liang M, Li LD, Li L, Li S

5156 Advances in the clinical application of oxycodone in the perioperative period
Chen HY, WangZN, Zhang WY, Zhu T

ORIGINAL ARTICLE
Clinical and Translational Research
5165 Circulating miR-627-5p and miR-199a-5p are promising diagnostic biomarkers of colorectal neoplasia

Retrospective Cohort Study
5185 Management and outcome of bronchial trauma due to blunt versus penetrating injuries

Retrospective Study
5196 Ovarian teratoma related anti-N-methyl-D-aspartate receptor encephalitis: A case series and review of the literature
Li SJ, Yu MH, Cheng J, Bai WX, Di W

5208 Endoscopic surgery for intraventricular hemorrhage: A comparative study and single center surgical experience
Wang FB, Yuan XW, Li JX, Zhang M, Xiang ZH

5217 Protective effects of female reproductive factors on gastric signet-ring cell carcinoma
Li Y, Zhong YX, Xu Q, Tian YT

5230 Risk factors of mortality and severe disability in the patients with cerebrovascular diseases treated with perioperative mechanical ventilation
Zhang JZ, Chen H, Wang X, Xu K
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5266</td>
<td>Long-term outcomes of high-risk percutaneous coronary interventions under extracorporeal membrane oxygenation support: An observational study</td>
<td>Huang YX, Xu ZM, Zhao L, Cao Y, Chen Y, Qiu YG, Liu YM, Zhang PY, He JC, Li TC</td>
</tr>
<tr>
<td>5275</td>
<td>Health care worker occupational experiences during the COVID-19 outbreak: A cross-sectional study</td>
<td>Li XF, Zhou XL, Zhao SX, Li YM, Pan SQ</td>
</tr>
<tr>
<td>5287</td>
<td>Enhanced recovery after surgery strategy to shorten perioperative fasting in children undergoing non-gastrointestinal surgery: A prospective study</td>
<td>Ying Y, Xu HZ, Han ML</td>
</tr>
<tr>
<td>5297</td>
<td>Orthodontic treatment combined with 3D printing guide plate implant restoration for edentulism and its influence on mastication and phonic function</td>
<td>Yan LB, Zhou YC, Wang Y, Li LX</td>
</tr>
<tr>
<td>5306</td>
<td>Effectiveness of psychosocial intervention for internalizing behavior problems among children of parents with alcohol dependence: Randomized controlled trial</td>
<td>Omkarappa DB, Rentala S, Nattala P</td>
</tr>
<tr>
<td>5317</td>
<td>Crouzon syndrome in a fraternal twin: A case report and review of the literature</td>
<td>Li XJ, Su JM, Ye XW</td>
</tr>
<tr>
<td>5324</td>
<td>Laparoscopic duodenoejunostomy for malignant stenosis as a part of multimodal therapy: A case report</td>
<td>Murakami T, Matsui Y</td>
</tr>
<tr>
<td>5331</td>
<td>Chordoma of petrosal mastoid region: A case report</td>
<td>Hua JJ, Ying ML, Chen ZW, Huang C, Zheng CS, Wang YJ</td>
</tr>
<tr>
<td>5337</td>
<td>Pneumatosis intestinalis after systemic chemotherapy for colorectal cancer: A case report</td>
<td>Liu H, Hsieh CT, Sun JM</td>
</tr>
<tr>
<td>5343</td>
<td>Mammary-type myofibroblastoma with infarction and atypical mitosis-a potential diagnostic pitfall: A case report</td>
<td>Zeng YF, Dai YZ, Chen M</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5365</td>
<td>Neonatal hemorrhage stroke and severe coagulopathy in a late preterm infant after receiving umbilical cord milking: A case report</td>
<td>Lu Y, Zhang ZQ</td>
</tr>
<tr>
<td>5373</td>
<td>Heel pain caused by os subcalcis: A case report</td>
<td>Saijilafu, Li SY, Yu X, Li ZQ, Yang G, Lv JH, Chen GX, Xu RJ</td>
</tr>
<tr>
<td>5380</td>
<td>Pulmonary lymphomatoid granulomatosis in a 4-year-old girl: A case report</td>
<td>Yao JW, Qiu L, Liang P, Liu HM, Chen LN</td>
</tr>
<tr>
<td>5387</td>
<td>Idiopathic membranous nephropathy in children: A case report</td>
<td>Cui KH, Zhang H, Tao YH</td>
</tr>
<tr>
<td>5394</td>
<td>Successful treatment of aortic dissection with pulmonary embolism: A case report</td>
<td>Chen XG, Shi SY, Ye YY, Wang H, Yao WF, Hu L</td>
</tr>
<tr>
<td>5400</td>
<td>Renal papillary necrosis with urinary tract obstruction: A case report</td>
<td>Pan HH, Luo YJ, Zhu QG, Ye LF</td>
</tr>
<tr>
<td>5414</td>
<td>Successful living donor liver transplantation with a graft-to-recipient weight ratio of 0.41 without portal flow modulation: A case report</td>
<td>Kim SH</td>
</tr>
<tr>
<td>5420</td>
<td>Treatment of gastric hepatoid adenocarcinoma with pembrolizumab and bevacizumab combination chemotherapy: A case report</td>
<td>Liu M, Luo C, Xie ZZ, Li X</td>
</tr>
<tr>
<td>5428</td>
<td>Ipsilateral synchronous papillary and clear renal cell carcinoma: A case report and review of literature</td>
<td>Yin J, Zheng M</td>
</tr>
<tr>
<td>5441</td>
<td>PIGN mutation multiple congenital anomalies-hypotonia-seizures syndrome 1: A case report</td>
<td>Hou F, Shan S, Jin H</td>
</tr>
</tbody>
</table>
Contents

5446 Pediatric acute myeloid leukemia patients with i(17)(q10) mimicking acute promyelocytic leukemia: Two case reports
Yan HX, Zhang WH, Wen JQ, Liu YH, Zhang BJ, Ji AD

5456 Fatal left atrial air embolism as a complication of percutaneous transthoracic lung biopsy: A case report
Li YW, Chen C, Xu Y, Weng QP, Qian SX

5463 Diagnostic value of bone marrow cell morphology in visceral leishmaniasis-associated hemophagocytic syndrome: Two case reports
Shi SL, Zhao H, Zhou BJ, Ma MB, Li XJ, Xu J, Jiang HC

5470 Rare case of hepatocellular carcinoma metastasis to urinary bladder: A case report
Kim Y, Kim YS, Yoo JJ, Kim SG, Chin S, Moon A

5479 Osteotomy combined with the trephine technique for invisible implant fracture: A case report
Chen LW, Wang M, Xia HB, Chen D

5487 Clinical diagnosis, treatment, and medical identification of specific pulmonary infection in naval pilots: Four case reports
Zeng J, Zhao GL, Yi JC, Liu DD, Jiang YQ, Lu X, Liu YB, Xue F, Dong J

5495 Congenital tuberculosis with tuberculous meningitis and situs inversus totalis: A case report

5502 Mixed large and small cell neuroendocrine carcinoma of the stomach: A case report and review of literature
Li ZF, Lu HZ, Chen YT, Bai XF, Wang TB, Fei H, Zhao DB

LETTER TO THE EDITOR

5510 Pleural involvement in cryptococcal infection
Georgakopoulou VE, Damaskos C, Sklapani P, Trakas N, Gkoufa A

5515 Electroconvulsive therapy plays an irreplaceable role in treatment of major depressive disorder
Ma ML, He LP
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Shivanshu Misra, MBBS, MCh, MS, Assistant Professor, Surgeon, Department of Minimal Access and Bariatric Surgery, Shivani Hospital and IVF, Kanpur 208005, Uttar Pradesh, India. shivanshu_medico@rediffmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang Le; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
June 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc
Pulmonary lymphomatoid granulomatosis in a 4-year-old girl: A case report

Jia-Wei Yao, Li Qiu, Ping Liang, Han-Min Liu, Li-Na Chen

CASE REPORT

BACKGROUND
Pulmonary lymphomatoid granulomatosis (PLG) is a lymphoproliferative disease associated with Epstein-Barr viral infection occurring mainly in adults and rarely in children. It is characterized by multiple pulmonary nodules. Its diagnosis depends on lung biopsy findings. Most patients are immunodeficient, and it commonly presents in children undergoing chemotherapy for leukemia. We report the case of a child with PLG caused by a mutation in the macrophage-expressed gene 1 (MPEG1), suggesting possible PLG occurrence in children undergoing treatment for pulmonary nodular lesions.

CASE SUMMARY
This study reports a case of PLG without apparent immunodeficiency, suggesting the possibility of this disease occurrence during the treatment of pulmonary nodular lesions in children. Initially, the cause was assumed to be an atypical pathogen. Following conventional anti-infective treatment, chest computed tomography findings revealed that there were still multiple nodules in the lungs. Additionally, the patient was found to be infected with the Epstein-Barr virus. Histopathological examination of the resected lung revealed lymphoproliferative lesions with necrosis. Small lymphocytes, plasma cells, and histiocytes were observed in the background, although Reed-Sternberg cells were absent. Immunohistochemical staining [CD20(+), CD30(+), and CD3(+) and EBV-encoded small RNA1/2 in situ hybridization of small lymphocytes revealed approximately 200...
cells/high-power field. Whole exon sequencing of the patient revealed a mutation in the MPEG1. The patient was eventually diagnosed with PLG and transferred to the Department of Pediatric Oncology for bone marrow transplantation.

CONCLUSION

As PLG is rare and fatal, it should be suspected in clinical settings when treatment of initial diagnosis is ineffective.

Key Words: Pulmonary lymphomatoid granulomatosis; Child; Epstein-Barr virus; Lymphoproliferative disease; Leukemia; Case report;

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Citation: Yao JW, Qiu L, Liang P, Liu HM, Chen LN. Pulmonary lymphomatoid granulomatosis in a 4-year-old girl: A case report. *World J Clin Cases* 2022; 10(16): 5380-5386

URL: https://www.wjgnet.com/2307-8960/full/v10/i16/5380.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i16.5380

INTRODUCTION

Pulmonary lymphomatoid granulomatosis (PLG) is a rare lymphoproliferative disease associated with Epstein-Barr virus (EBV) infection. It commonly affects adults aged 30–50 years. The clinical manifestations are usually non-specific, occasionally presenting with pulmonary nodular lesions\(^1\),\(^2\). PLG is rarely observed in children. Herein, we present a case of a child diagnosed with PLG following a lung biopsy. This report aims to improve the clinical understanding of PLG in children.

CASE PRESENTATION

Chief complaints

A 4-year-old girl was hospitalized because of a 50-d history of pallor.

History of present illness

Four days before admission, the child developed intermittent fever (1-2 times per day; maximum temperature, 38.5 ºC), accompanied by paroxysmal cough and sore throat.

History of past illness

The patient had no history of hemoptysis, hematemesis, hematuria, or hematochezia. She had a history of chronic diarrhea, which was unresolved despite a diet of deep hydrolyzed milk powder. Routine blood examination revealed severe anemia. Emergency infusion of leukocyte suspension (1.5 U) and mezlocillin-sulbactam antibiotics were administered.

Personal and family history

Birth and developmental history were unremarkable.

Physical examination

Physical examination at admission revealed normal vital signs (temperature, 36.5 ºC; pulse rate, 119 beats/min; respiratory rate, 33 cycles/min; blood pressure, 98/64 mmHg; and oxygen saturation, 98% in room air) and a body weight of 13.5 kg. She had pallor and clubbing. Rhonchi were noted in both lung fields. The liver was palpable, 5 cm below the costal margin, with blunt edges. Other physical
examination findings were unremarkable.

Laboratory examinations
Complete blood cell count showed normal total and differential white blood cell counts; decreased hemoglobin level (5 g/dL), normal mean corpuscular volume (94.3 fL), mean corpuscular hemoglobin (28.4 pg) values, and increased reticulocyte count (4.98%). The platelet count and C-reactive protein levels were normal. The direct and indirect antiglobulin tests and isopropanol tests were negative. The serum glucose-6-phosphate dehydrogenase, folic acid, and vitamin B12 levels were normal. The serum ferritin and iron levels were normal. She was tested negative for thalassemia. Bone marrow aspiration showed granulocytosis and abnormal lymphocytes (3.5%).

Microbiological identification of the causative agent
Microbiologic examination for antigens of seven respiratory pathogens (influenza A, influenza B, respiratory syncytial virus, adenovirus, and parainfluenza 1, 2, and 3), *Mycoplasma pneumoniae* IgM and total antibody, and chlamydia IgM antibody were all negative. The serum fungal G, GM tests, and T-SPOT test were normal. The serum anti-EBV capsid antigen IgM (> 160.0 U/mL) and IgG (> 750.00 U/mL) were positive; anti-EBV early antigen IgG was also positive (> 150.00 U/mL). The quantity of EBV DNA was significantly high (5.14 × 10^5 copies/mL). Humoral immunity, IgG subclasses, T lymphocytes, B lymphocytes, and natural killer cells were all within the normal ranges.

Exome sequencing
Exome sequencing revealed a pathogenic, pure heterozygous variant of macrophage-expressed gene 1 (*MPEG1*) (NM_001039396: c.946C>T; p.P316S). Both parents of the patient were genotypically heterozygous. Electronic bronchoscopy revealed many white nodules on the mucosa of the left and right main bronchi, left upper and lower lobe bronchi, and right upper and middle lobe bronchi, as well as mild hemorrhage in the posterior basal segment of the left lower lobe (Figure 1). *Escherichia coli* producing extended-spectrum β-lactamases were cultured in the bronchoalveolar lavage fluid. Histopathological examination of the resected lung revealed lymphoproliferative lesions with necrosis. The proliferative and infiltrating lymphocytes were moderately sized with round nuclei and occasional nucleoli. Mitosis and infiltration of the blood vessels by these cells were noted. Small lymphocytes, plasma cells, and histiocytes were observed in the background, although Reed-Sternberg cells were absent. Immunohistochemical staining [CD20(+), CD30(+), and CD3(+)] and EBV-encoded small RNA1/2 *in situ* hybridization (ISH) of small lymphocytes revealed approximately 200 cells/high-power field (Figure 2).

Imaging examinations
Chest computed tomography (CT) findings revealed multiple lower lobe nodules and shadows, multiple bilateral hilar and mediastinal lymph node enlargement, mild left pleural effusion, and bilateral pleural thickening (Figure 3A).

FINAL DIAGNOSIS
The patient was eventually diagnosed with PLG and transferred to the Department of Pediatric Oncology for further treatment.

TREATMENT
After admission, the patient was treated with imipenem-cilastatin and acyclovir antiviral therapy. However, the cough persisted, and chest CT findings showed no significant shrinkage of the pulmonary nodules even 1 mo after treatment (Figure 3B). Suspecting a possible lung tumor, we performed thoracoscopic wedge resection of the lower lobe of the left lung with pleural adhesion cautery and lung biopsy for histopathological determination (Figure 4).

OUTCOME AND FOLLOW-UP
The patient was transferred to the Department of Pediatric Oncology. She was prescribed a chemotherapy regimen of prednisone, vincristine, and cyclophosphamide. Then, she received bone marrow transplantation. She remained relatively well throughout the treatment without immune deficiency or new infections.
Figure 1 White nodules in trachea and the left main bronchus are observed (arrow). The mucosa of the posterior basal segment of the left lower lobe is pale, and mild hemorrhage in the posterior basal segment of the left lower lobe (arrowhead) is observed.

Figure 2 Lymphoproliferative lesions with necrosis. A: The proliferated and infiltrated lymphocytes are moderately large, the nucleus is round, and some nucleoli can be observed (HE × 100); B: Cells infiltrating blood vessels can be observed (HE × 200); C: Small lymphocytes, plasma cells, and histiocytes are observed in the background. (HE × 400).

DISCUSSION

Liebow et al[2] first identified PLG. Besides multiple lung nodules, some patients with PLG may present with cough, dyspnea, chest pain, subcutaneous nodules, weight loss, and nervous system involvement (ataxia, hearing impairment, and dysarthria). Others may present with extrapulmonary involvement, such as those of the skin and nerves. PLG was renamed as mature B-cell tumor in 2016[3,4,5].

At present, the diagnosis of PLG is primarily based on histological findings of the lung tissue showing the "triad" of pleomorphic lymphocyte infiltration with necrosis, infiltration of lymphocytes in the arterial and venous walls, and EBV-positive B cells confirmed by ISH. In this case, lung histopathology showed moderate-sized infiltrating cells, lymphoid tissue hyperplasia with necrosis, and small lymphocytes, plasma cells, and histiocytes in the background. A variable number of CD20-positive B cells existed in the background of CD3-positive small lymphocytes and were EBER1/2-ISH-positive, thus, meeting the diagnostic criteria for PLG. Histologically, PLG is graded according to the proportion of EBV-positive large B lymphocytes determined by EBER: Grade 1 Lesion is composed of scattered EBV-positive cells without necrosis; Grade 2 Lesions include an increased number of large B cells and some necrosis; and Grade 3 Lesions consist mainly of many virus-positive cells with extensive necrosis[1,3,4]. This case was classified as Grade 3 because the lesion comprised many EBV-positive cells.

EBV belongs to the γ subfamily of herpesvirus. The EBV genome is a linear double-stranded DNA molecule, a prototype virus of the genus of lymphofollicular viruses. In vitro, all γ herpesviruses can replicate in lymphoid cells, although only some can replicate lytically in epithelial cells and fibroblasts. Primate B lymphocyte infection usually leads to latent infection, characterized by the persistence of the viral genome and the expression of a series of limited latent gene products, thus promoting the transformation process and helping to drive cell proliferation[6]. The cleavage-associated gene of EBV has a significant homology with the human genome, and some genes have significant homology with human B-cell leukemia/Lymphoma 2. This gene is involved in the apoptosis of tissue B cells and other
lymphocytes. In patients with congenital or acquired immunodeficiency, B cells infected by EBV easily undergo tumorigenic transformation\[7,8\]. EBV is believed to play an important role in driving PLG. It is speculated that host immune deficiency leads to abnormal clearance response to EBV, consequently leading to abnormal lymphoid tissue proliferation and apoptosis inhibition. This results in a large number of leukocytes infiltrating the blood vessels, followed by injury and tissue destruction\[9\]. Approximately half of the PLG cases in children are found in those undergoing treatment for leukemia. Some adult PLG cases are reportedly related to the use of certain drugs (methotrexate and imatinib) that, when withdrawn, lead to the disease resolution\[10\].

The MPEG1 is an ancient postnatal animal protein that belongs to the pore-forming protein of the membrane attack complex/perforin (MACPF) branch of the MACPF/cholesterol-dependent cytolytic cellulose superfamily. The MACPF functions in human immunity and development. The MPEG1 facilitates the entry of numerous antimicrobial effectors into cells, including proteases, reactive oxygen and nitrogen species, and bactericidal peptides, and mediates the harsh acidic environment of phagosomes\[11\]. No case of MPEG1 mutations have been reported in patients with PLG. However, one study found this mutation in diffuse large B-cell lymphoma. Notably, a series of genetic mutations co-exist with MYD88, including PRDM1, all of which occur at a high frequency in the MCD subtype, as defined by Schmitz et al\[12\], which promote nuclear factor-κB activation in a B-cell receptor-dependent manner. These findings confirm that MYD88 alone is insufficient to drive the malignant transformation of B cells and may induce lymphoma with other genetic events.
There are few reported cases of PLG in children, including a literature review of 49 published pediatric cases of PLG\cite{13}. The affected patients were usually immunodeficient, and only one case reported hemolytic anemia.

Mild or severe PLG on chest CT usually shows well- or ill-defined bilateral pulmonary nodules mainly located in the lower lung fields. The nodules vary in size (usually 1 cm–2 cm in diameter) and are mostly related to interstitial lung diseases. Nodules are usually distributed along with the bronchovascular bundles or interlobular septa, possibly because of the tendency of lymphocytes to infiltrate the subintimal area of blood vessels. The size of the nodules can fluctuate gradually, and some of the nodules can be matted, in consistency with our observation. Bronchoscopy also revealed many small white nodules of different sizes in the bronchial lumen. Other cases also reported pleural effusion and hilar lymph node enlargement in patients with PLG. Diffuse ground-glass degeneration is uncommon and may be caused by peri-focal hemorrhage or pneumonia\cite{14-17}, which is consistent with bronchoscopic observation of the hemorrhage in the basal segment of the lower left lung lobe in this case.

The natural course of PLG varies greatly from spontaneous regression to death. The overall prognosis of PLG is poor, with a high mortality rate (60%–90%) within 5 years. Currently, the main treatments for patients with PLG are similar to those for non-Hodgkin’s lymphoma, including the use of rituximab to eliminate B cells. In previous reports, some patients received hematopoietic stem cell transplantation, and most were also treated with corticosteroids. According to the different grades of PLG, patients in advanced stages are more likely to receive treatment combined with immunochemotherapy, while low-grade lesions can be treated with interferon-α\cite{13,18}.

CONCLUSION

In conclusion, PLG is a rare but potentially fatal disease in children. Children usually present with diffuse pulmonary nodules. Owing to the difficulty of diagnosis using clinical data and chest imaging, histopathology and chest imaging findings should be closely examined. In clinical settings, when the initial diagnosis is pneumonia and the treatment is ineffective, PLG should be considered.

ACKNOWLEDGEMENTS

The authors thank Chen ZJ and Zhang PL for their help, guidance, and valuable discussions.

FOOTNOTES

Author contributions: Chen LN and Liu HM concepted the study; Chen LN, Qiu L, Liang P, and Yao JW did the investigation; Yao JW and Liang P did the writing and original draft; Chen LN writing the review and editing.

Supported by Science and Technology department of Sichuan Province, No. 2020YS0105; and West China Second University Hospital of Sichuan University, No. KL036.

Informed consent statement: Informed written consent was obtained from the patient’s guardians for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Jia-Wei Yao 0000-0001-9803-1566; Li Qiu 0000-0001-8484-7062; Ping Liang 0000-0001-8816-9924; Han-Min Liu 0000-0002-4633-911X; Li-Na Chen 0000-0001-9537-8847.

S-Editor: Xing YX

L-Editor: A
REFERENCES

