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Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) 
levels plays a pivotal role in cardiac function. In recent years, burgeoning at-
tention has been directed towards ATP-induced cell death (AICD), revealing it as 
a distinct cellular demise pathway triggered by heightened extracellular ATP 
concentrations, distinguishing it from other forms of cell death such as apoptosis 
and necrosis. AICD is increasingly acknowledged as a critical mechanism me-
diating the pathogenesis and progression of various cardiovascular maladies, 
encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomy-
opathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. 
Consequently, a comprehensive understanding of the molecular and metabolic 
underpinnings of AICD in cardiac tissue holds promise for the prevention and 
amelioration of cardiovascular diseases. This review first elucidates the vital 
physiological roles of ATP in the cardiovascular system, subsequently delving 
into the intricate molecular mechanisms and metabolic signatures governing 
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AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating 
cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative 
therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of 
cardiovascular disorders.

Key Words: Adenosine triphosphate induced cell death; Cardiovascular diseases; Myocardial ischemia-reperfusion injury; 
Molecular mechanisms; Metabolic pathways

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Understanding the mechanisms behind adenosine triphosphate (ATP)-induced cell death (AICD) is crucial for 
addressing various cardiovascular diseases. AICD, triggered by elevated extracellular ATP levels, differs from other forms 
of cell death and has emerged as a significant contributor to conditions such as myocardial ischemia-reperfusion injury, 
sepsis-induced cardiomyopathy, and diabetic cardiomyopathy. This review explores the physiological roles of ATP in the 
cardiovascular system and delves into the molecular and metabolic mechanisms underlying AICD. Identifying therapeutic 
targets to mitigate AICD holds promise for treating cardiovascular diseases, although challenges remain. This review 
provides valuable insights and strategies for preventing and managing cardiovascular disorders.

Citation: Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine 
triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16(12): 689-706
URL: https://www.wjgnet.com/1949-8462/full/v16/i12/689.htm
DOI: https://dx.doi.org/10.4330/wjc.v16.i12.689

INTRODUCTION
Over the past decade, the Committee on Cell Death Nomenclature has diligently crafted a comprehensive delineation of 
cell demise, integrating various perspectives encompassing morphology, biochemistry, and functionality[1]. Studies have 
made novel insights into the mechanisms governing diverse cell death mechanisms. Research has elucidated the intricate 
interplay of apoptosis, necrotic apoptosis, pyroptosis, and apoptosis in the etiology of cardiovascular disorders[2]. 
Adenosine triphosphate (ATP) serves as a multifaceted signaling molecule within cells, as it assumes a pivotal role in 
cellular energy metabolism. There has been a recent surge in investigations delving into ATP-induced cell death (AICD). 
AICD represents a distinct mode of cellular demise elicited by heightened extracellular ATP (eATP) levels, distinguishing 
it from conventional forms of cell death like apoptosis and necrosis. Nonetheless, the specific methods and modalities 
behind AICD continue to be unresolved [3].

Intracellular ATP typically maintains a delicate equilibrium, serving as a pivotal currency for energy transfer, signaling 
cascades, and cellular metabolism. Both external stimuli or internal insults can perturb this balance, leading to 
disruptions in intracellular ATP homeostasis, eATP release, and ultimately cellular demise[2]. Concurrently, AICD causes 
the release of inflammatory mediators, inducing local or systemic inflammatory cascades and causing metabolic dysregu-
lation. Among the myriad metabolic alterations observed in cardiovascular diseases, lipid metabolism disorders 
prominently stand out [4]. Additionally, lipid metabolism contributes to the deposition of heat-sensitive proteins during 
disease onset, underscoring the intricate interplay between lipid metabolism and thermal protein deposition. Never-
theless, excessive thermal protein deposition can induce an overwhelming inflammatory response and tissue damage, 
exacerbating cardiovascular disease progression and prognosis[5,6].

During AICD, alterations in phospholipid distribution across the cell membrane are observed alongside disruptions in 
ATP homeostasis, culminating in membrane destabilization and rupture. This phenomenon is intricately linked to 
cellular damage and inflammation in cardiovascular pathologies[7]. Investigations have elucidated the mechanism 
underlying ATP-mediated T cell demise through P2X7 receptor (P2X7R) activation[8]. Consequently, P2X7R expression 
emerges as a pivotal determinant of AICD, not only offering insights into the immunomodulatory mechanisms 
underlying cardiovascular diseases but also presenting novel avenues for therapeutic intervention[9,10].

To date, substantial evidence underscores the intricate association between AICD and cardiovascular disease 
pathogenesis, implicating inflammatory responses, cellular damage, and immune dysregulation as pivotal mediators. In 
this comprehensive review, we elucidate the intricate regulation of ATP homeostasis and delineate the underlying 
mechanisms of lipid metabolism. Moreover, we delve into the progression of AICD in cardiovascular pathologies and 
explore its potential implications in the context of arrhythmias.

MECHANISM AND REGULATION OF ATP HOMEOSTASIS AND AICD
As a multifaceted signaling molecule, ATP orchestrates pivotal biological activities within cellular microenvironments, 
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including metabolic processes, signal transduction cascades, and energy transfer. The intricate balance of intracellular 
ATP levels, termed ATP homeostasis, is meticulously maintained through the interplay of synthesis and utilization 
processes within cells. However, this equilibrium can be disrupted following internal injuries or external stimuli, leading 
to elevated extracellular ATP (eATP) levels and subsequent intracellular ATP release[11]. This perturbation results in 
AICD, mediated by several well-elucidated mechanisms and regulatory pathways. ATP primarily engages with 
extracellular P2R proteins, particularly the P2X7R family, triggering a cascade of events that includes the activation of 
associated receptors such as NOD-like receptor family pyrin domain-containing protein 1 (NLRP1) and NLRP3. This 
activation cascade meticulously coordinates apoptotic signals, encompassing caspases-1, -3, and -11, while also 
implicating necrotic effectors, such as gasdermin E and gasdermin D, ultimately leading to cellular demise[2]. 
Secondarily, ATP’s interaction with ion channels on the cell membrane modulates ion balance, notably through P2X7R 
activation-induced opening of ion channels, leading to intracellular calcium ion (Ca2+) accumulation within various 
cellular compartments, including the Golgi apparatus and mitochondria. This aberrant Ca2+ influx induces nuclear DNA 
damage, precipitating cellular demise. Additionally, ATP triggers mitochondrial dysfunction, evident in the loss of 
mitochondrial membrane potential, disruption of the mitochondrial respiratory chain, production of reactive oxygen 
species (ROS), and the disruption of mitochondrial membrane permeability. These aberrations culminate in cellular 
demise. Moreover, ATP induces immune-inflammatory responses and cell death pathways, leading to the release of 
inflammatory mediators such as interleukin (IL)-1β, IL-18, tumor necrosis factor (TNF)-α, IL-2, IL-4, IL-6, IL-10, C-C 
chemokine ligand 5, and CXC motif chemokine ligand 2, ultimately driving cell death (Figure 1)[12].

ATP IN THE HEART INDUCES CELL DEATH
Upon external stimuli or internal injury, elevated eATP levels and intracellular ATP release induces cell demise. ATP 
induces cellular demise by inducing mitochondrial membrane potential loss through membrane K+/Na+ imbalance, 
mitochondrial respiratory chain disruption, ROS production, and linear membrane permeability alterations. As a result, it 
coordinates immune-inflammatory reactions, initiates cell death pathways and AICD, leading to the secretion of inflam-
matory mediators including IL-1β, IL-18, TNF-α, IL-2, IL-4, IL-6, IL-10, C-C chemokine ligand 5, and CXC motif 
chemokine ligand 2, ultimately resulting in cellular demise[2]. Additionally, P2 receptor-mediated ATP exerts an anti-
apoptotic effect, involving pathways such as phosphoinositide 3-kinase, extracellular signal regulated kinase 1 and 2, 
mitoKATP, and nitric oxide synthase pathway[13]. Moreover, the production of ROS and oxidative stress serve as central 
mechanisms responsible for cellular damage and dysfunction. Sirtuin 6 (SIRT6), a member of the sirtuin family of NAD+-
dependent class III deacetylases, holds a pivotal role in resisting oxidative stress. SIRT6 upregulates AMP/ATP levels 
and activates the adenosine 5’-monophosphate-activated protein kinase (AMPK)-forkhead box O3α (FoxO3α) axis, 
triggering the expression of downstream antioxidant genes, such as manganese superoxide dismutase and catalase. This 
process alleviates intracellular oxidative stress and confers protection against ischemic heart injury[14]. Furthermore, 
myocardial ischemia-reperfusion injury (IRI) involves multiple mechanisms, including ROS production, changes in 
cellular osmotic pressure, and inflammatory reactions. Calcium overload, oxygen level fluctuations, and mitochondrial 
ROS are major contributors to the irreversible opening of the mitochondrial permeability transition pore (mPTP). These 
processes are intricately associated with NLRP3 inflammasome activation, governing the maturation and secretion of IL-
1β and IL-18[15]. Consequently, upregulation of the caspase-1 pathway and IL-18 release further exacerbates cell death. 
Moreover, endothelial dysfunction occurs regardless of myocardial IRI presence, resulting from oxygen level fluctuations, 
reduced nitric oxide production, and excessive ROS generation. This ultimately leads to the expression of adhesion 
molecules and leukocyte infiltration. The central role of the NLRP3 inflammasome in modulating coronary blood flow 
alterations via endothelial dysfunction underscores its significance in ischemic heart disease pathology[16].

Additionally, ATP interacts with peripheral purine type 2 receptors, specifically P2X7R, while simultaneously 
activating associated receptors, such as NLRP1 and NLRP3. This activation triggers apoptotic signals involving caspase-1, 
caspase-3, and caspase-11, and involves necrotic proteins like gasdermin E and gasdermin D[2]. Caspase-1 has emerged 
as a molecular target with the potential to impede cardiovascular disease progression, notably heart failure (HF), owing 
to its pivotal role in fostering inflammation and cardiomyocyte loss. Studies suggest that left ventricular assist device 
implantation modulates caspase-1 expression levels, thus altering inflammatory and apoptotic aspects of the heart. 
Inflammation appears pivotal in modulating caspase-1 signaling and its downstream effects, including apoptosis. 
However, caspase-1 deficiency exacerbates myocardial hypertrophy in renal ischemia-reperfusion mouse models[17,18]. 
Additionally, inflammation assumes a crucial role in HF onset, progression, and prognosis. The NLRP3 inflammatory 
complex serves as a pivotal hub in chronic inflammatory responses, fostering the generation of pro-inflammatory 
cytokines IL-1β and IL-18, thereby exacerbating inflammation. Thus, inhibition of downstream factors of the NLRP3 
inflammatory complex and its signaling pathway holds promise as a novel intervention strategy for HF treatment[19].

However, pharmacological inhibition of eATP or genetic ablation of P2X7Rs disrupts the function of the myocardial 
NLRP3 inflammatory complex during stress overload, highlighting the pivotal role of the ATP/P2X7 axis in cardiac 
inflammation and hypertrophy. eATP induces hypertrophic alterations in cardiomyocytes via an NLRP3- and IL-1β-
dependent mechanism. Research on the sympathetic nervous system indicates that sympathetic efferent nerves are the 
main source of eATP. The depletion of ATP released by sympathetic efferent nerves and the elimination of cardiac 
afferent nerves or lipophilic β receptors lead to reduced cardiac eATP levels, subsequently inhibiting the activation of the 
NLRP3 inflammatory complex, IL-1β production, and adaptive myocardial hypertrophy in response to pressure overload
[20].
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Figure 1 Regulation mechanism of adenosine triphosphate homeostasis and adenosine triphosphate-induced cell death. A: P2 receptor 
activation pathway; B: Ca2+ pathway induces cell death pathways; C: The induction of cell death by adenosine triphosphate results in the release of immune 
inflammatory factors and activation of immune pathways that further promote cell death; D: The concurrent depletion of mitochondrial membrane potential, disruption 
of mitochondrial integrity, generation of reactive oxygen species, and alterations in mitochondrial membrane permeability jointly contribute to the ultimate demise of 
the cell. ATP: Adenosine triphosphate; PI3K: Phosphoinositide 3-kinase; AKT: Protein kinase B; PNAX1: Pannexin-1; GSDMD: Gasdermin D; NLRP3: NOD-like 
receptor family pyrin domain-containing protein 3; IL: Interleukin; ACS: Apoptosis-associated speck-like protein containing a caspase recruitment domain; ORAI1: 
Calcium release activated calcium channel protein 1; STIM1: Stromal interaction molecule 1; CYTC: Cytochrome c; APAF1: Apoptotic protease-activating factor 1; 
HMGB: High-mobility group box; TNF: Tumor necrosis factor; TIMP1: Tissue inhibitor of matrix metalloprotease 1; MMP: Matrix metalloproteinase; TGF: Transforming 
growth factor; NF-κB: Nuclear factor κB; STAT: Signal transducer and activator of transcription; MYD88: Myeloid differentiation factor-88; TRAF2: Tumor necrosis 
factor receptor associated factor 2; TAK1: Beta-activated kinase 1; JNK: c-Jun N-terminal kinase; MAP3K5: Mitogen-activated protein kinase kinase kinase 5; IRAK: 
Interleukin-1 receptor-associated kinase; MAF-C: MAF BZIP transcription factor C; NOS2: Nitric oxide synthase; ROS: Reactive oxygen species; mTPT: Mitochondrial 
permeability transition.

Moreover, the chloride/bicarbonate ion exchangers AE1, AE2, and AE3 are integral membrane proteins involved in 
pH regulation across vertebrate tissues, modulated by neurohormonal regulation. Co-expression of AE1 and AE3 in 
cardiomyocytes facilitates purine agonist ATP-induced cation exchange. ATP stimulates the phosphorylation of tyrosine 
residues on AE1, leading to the activation of Fyn tyrosine kinase and the binding of Fyn and FAK to AE1. Inhibiting Src-
family kinases in vivo using compounds like genistein, herbimycin A, or ST638 effectively blocks ATP-triggered AE1 
activation. Microinjection of anti-C-terminal Src kinase 1 antibodies or recombinant C-terminal Src kinase, which inhibits 
Src-family kinase activation, significantly reduces ATP-induced AE1 activation. Moreover, microinjection of anti-FAK 
antibodies and expression of Phe397 FAK dominant negative mutants in cardiomyocytes impede purine-induced AE1 
activation. As a result, tyrosine kinases have emerged as crucial regulators in the acute modulation of intracellular pH 
and cellular function, particularly in the excitation-contraction coupling of cardiomyocytes[21]. Mild mitochondrial 
uncoupling in cardiomyocytes triggered by uncoupling agents prompts signal transducer and activator of transcription 3 
(STAT3) activation and ATP upregulation. However, excessive mitochondrial uncoupling results in STAT3 inhibition, 
ATP depletion, and subsequent cellular damage. The development of mitochondrial uncoupling agents with a precisely 
calibrated dose window that induces mild uncoupling represents a promising approach for enhancing cardiac protection
[22].

The human heart relies on a diverse range of energy substrates to maintain its normal contractile function. Under 
physiological conditions, glucose and long-chain fatty acids (FAs) serve as the primary substrates involved in 
cardiometabolic processes. However, during stress, there is a shift in substrate preference towards glucose or FAs, which 
has been implicated in heart disease[23,24]. Research indicates that the pannexin-1 channel is responsible for releasing 
ATP, subsequently activating fibroblasts within the heart[25]. When cardiac fibroblasts are exposed to ATP or its non-
hydrolyzed analog benzoyl ATP, they undergo apoptosis. Similarly, TNF-α, a cytokine linked to the advancement of 
chronic HF, exacerbates cell death. Similar effects were observed in a murine cardiac muscle cell line, where TNF-α 
counteracted the decrease in P2X(6) mRNA expression typically seen with prolonged exposure to agonists. This indicates 
that TNF-α disrupts a protective mechanism intended to prevent calcium overload and eventual calcium-dependent cell 
death by inhibiting ATP-induced P2X6 desensitization[26]. Moreover, stromal interaction molecule 1, a well-known 
calcium detector within the endoplasmic reticulum calcium reservoir, is increasingly acknowledged as a crucial factor in 
regulating cardiac hypertrophy and diabetic cardiomyopathy[27,28]. Consequently, a range of proteins involved in 
regulating cellular ATP homeostasis play crucial roles in AICD[16-20,23-26,29-58] (Table 1).
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Table 1 Principal modulators of iron metabolism involved in adenosine triphosphate-induced cell death

Gene Function Role in AICD Effects of genetic deletion or 
overexpression Ref.

P2RX7 Inflammation and immune 
regulation, neurotransmission, 
apoptosis and autophagy

Activates inflammatory 
mediators and increases calcium 
ions

Its activation is closely related to the development 
of cardiac diseases such as cardiomyopathy, 
myocardial infarction and myocarditis

[29]

CASP3 Execution stage of apoptosis CASP3 cleavage by 
CASP1/4/5/11 forms pores, 
releasing proinflammatory 
cytokines

Caspase contributes to the progressive decline in 
systolic function observed in heart failure by 
facilitating the degradation of myofibrillar 
protein. Therefore, the selective inhibition of 
CASP3’s proteolytic function may offer a 
promising strategy for mitigating or reversing the 
effects of heart failure

[30]

PANX1 Widely involved in ATP and ion 
permeability, can effectively reduce 
CCI induced mechanical pain and 
thermal hyperalgesia

P2X7 activation opens PANX1 
channels, releasing ATP and 
triggering cell death pathways

PANX1 channels release ATP, which then 
activates fibroblasts in the heart and promotes the 
development of cardiac fibrosis after myocardial 
infarction. PANX1 deficiency results in 
atrioventricular block, delayed ventricular 
depolarization, significantly prolonged QT 
interval and rate-corrected QT interval, and an 
increased incidence of atrial fibrillation following 
intraatrial burst stimulation

[25,31]

NLRP3 It plays an important role in inflam-
mation and immune responses and 
can sense various stimuli inside and 
outside the cell

Upon activation by stimulatory 
signals, NLRP3 forms an inflam-
masome, triggering CASP1 
activation. This in turn leads to 
the release of cytokines and 
apoptosis

Involved in the process of ischemia-reperfusion 
injury and endothelial dysfunction, affecting the 
changes of coronary blood flow; participate in 
chronic inflammatory response and myocardial 
hypertrophy, accelerate the production of pro-
inflammatory cytokines, leading to the occurrence 
and development of heart failure

[16,19,20]

CASP1 Membrane hyperpolarization; 
mitochondrial depolarization and 
positive regulation of IL-1α 
production

CASP1 triggers the processing of 
cytokines, pyrosis, and inflam-
mation, thereby orchestrating 
the inflammatory response

Involved in inflammation and loss of heart muscle 
cells. LVAD implantation may alter the inflam-
matory and apoptotic characteristics of the heart 
by regulating CASP1 expression levels. CASP1 
deficiency resulted in more obvious myocardial 
hypertrophy in renal ischemia-reperfusion mice

[17,18]

P2RY1 Activates downstream signals P2RY1 has the capacity to 
elevate calcium ion levels within 
the Golgi apparatus

P2RY1 gene is associated with the development of 
heart disease and the response to anticoagulant 
therapy. Meanwhile, the polymorphism of P2RY1 
gene is associated with the onset age of 
myocardial infarction, which may have a 
protective effect or influence the progression of 
myocardial infarction

[32]

P2RY11 Immune regulation, neurotrans-
mission, insulin secretion

It plays a role in immune inflam-
matory mechanisms

The P2RY11 gene is implicated in the regulation 
and repair of inflammatory processes in the heart. 
Enhanced expression of this gene may facilitate 
myocardial fibrosis and play a crucial role in the 
restoration of cardiac function following acute 
myocardial infarction

[20]

ORAI1 Calcium ion coupling is involved in 
the activation and proliferation of 
immune cells

Increased intracellular calcium 
ions

The ORAI1 gene plays an important role in the 
heart, especially in cardiac diseases such as 
cardiac hypertrophy and heart failure, and is 
involved in regulating the flow of calcium ions in 
cardiomyocytes, affecting the systolic and 
diastolic functions of the heart

[33]

STIM1 Calcium ion sensor. It is involved in 
immune cell activation, muscle 
contraction and cell cycle regulation

STIM1 responds to ATP-induced 
calcium influx by activating 
ORAI1, thereby contributing to 
cell death

STIM1 plays a pivotal role in regulating SOCE 
and Ca2+ storage replenishment, crucial for heart 
development and growth. Additionally, the 
STIM1 gene modulates energy substrate 
preferences in the heart, with implications for 
metabolic disorders like cardiac hypertrophy and 
diabetic cardiomyopathy. Elucidating its 
molecular mechanisms could lead to the discovery 
of novel therapeutic targets for the prevention and 
treatment of cardiac metabolic diseases

[23,24]

CASP8 Modulating apoptosis CASP8 causes apoptosis It is involved in apoptosis and cytokine 
processing and is crucial for heart development 
and hematopoietic function. Lack of CASP8 leads 
to defects in heart muscle development and a 
decrease in hematopoietic progenitor cells

[34]

Modulating apoptosis (programmed The CASP9 gene is involved in mitochondria-CASP9 CASP9 causes apoptosis [35]
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cell death) mediated apoptosis in the heart. As an inhibitor of 
CASP9, HAX-1 protein protects cardiomyocytes 
from apoptosis and maintains cardiac function

CASP7 The executive stage of catalytic 
apoptosis

CASP7 causes apoptosis Inhibition of CASP7 can reduce myocardial 
infarction size and apoptosis, providing a new 
strategy for the treatment of myocardial ischemia

[36]

P2RX3 Involved in the conduction of 
sensory neurons and the perception 
of pain

NA It is involved in pain signal transduction caused 
by myocardial ischemia and is a potential 
therapeutic target

[37,38]

NLRP1 Regulates inflammation and 
immune response

Upon activation, NLRP1 triggers 
CASP1 activation, leading to the 
induction of pyroptosis and the 
release of IL-1β and IL-18

NLRP1 gene is closely related to cardiovascular 
diseases. The NLRP1 inflammatory complex 
expressed by NLRP1 gene is involved in the 
pathogenesis of cardiovascular diseases and may 
be a potential therapeutic target

[39]

P2RX4 Involved in cellular signaling P2RX4 promotes AICD 
(pyroptosis) through the 
activation of the NLRP3 inflam-
masome, resulting in the 
production of IL-1β and IL-18

The P2RX4 gene in the heart may influence blood 
pressure and kidney function by regulating 
vascular tension

[40]

P2RX5 Involved in neurotransmission and 
pain regulation

NA P2RX5 gene may be related to varicose veins and 
synaptic vesicles in the heart, and it is involved in 
cardiac development and functional regulation

[41]

SAPK Involved in cellular stress response 
and inflammation regulation

ATP triggers cell death through 
SAPK pathways, modulating 
apoptosis, necrosis, and stress 
signaling mechanisms

It plays a role in regulating cardiomyocyte 
hypertrophy and apoptosis. MiR-350 induces 
cardiomyocyte hypertrophy by inhibiting the 
SAPK pathway, suggesting that the SAPK gene is 
a key regulator of pathologic heart hypertrophy 
and apoptosis

[42]

p38 MAPK It is involved in cell signaling, cell 
stress response, inflammation 
regulation, apoptosis and other 
biological processes

ATP stimulates p38MAPK, 
ultimately leading to cell death 
via apoptosis and necrosis

It is involved in the regulation of cardiomyocyte 
proliferation, apoptosis and hypertrophy. 
Involved in the regulation of stress response and 
cardiomyocyte differentiation, its balance in terms 
of protective and deleterious effects affects cardiac 
function

[43]

ASK1 It regulates biological processes 
such as cell survival and death, 
inflammatory response, cell stress 
response, and oxidative stress

Elevated levels of ATP trigger 
cellular stress, activating ASK1 
and subsequent downstream 
pathways, ultimately leading to 
cell death

ASK1 activation can lead to hypertrophy, fibrosis 
and dysfunction of the heart

[44]

NOX2 It plays a crucial role in the 
generation of reactive oxygen 
species within cells, thereby 
regulating physiological processes 
including cell signaling, immune 
response, and oxidative stress

ATP stimulates NOX2 
activation, leading to ROS 
production, which induces 
oxidative stress and potentially 
triggers cell death

Increased NOX2 activity may lead to 
diaphragmatic dysfunction, which can trigger 
symptoms of heart failure

[45]

Bax It is involved in regulating 
biological processes such as cell 
development, immune response and 
tumor suppression

Elevated levels of ATP trigger 
Bax activation, resulting in 
mitochondrial dysfunction and 
apoptotic cell death

It is involved in the process of myocardial 
apoptosis induced by ischemia

[46]

MLC It plays a pivotal role in regulating 
muscle contraction and movement, 
thereby influencing biological 
processes including cell morphology 
and motility

Depletion of ATP impairs 
muscle contraction by 
compromising myosin function 
and cellular viability

Reduced MLC expression is associated with the 
pathogenesis of heart failure

[47]

ROCK I It orchestrates biological processes 
encompassing cell morphology, 
polarity, and contraction, integral to 
functions like cell migration, muscle 
contractility, and cytoskeletal 
remodeling

ATP stimulates P2X7Rs, 
triggering apoptosis through the 
Rho/ROCK pathway, 
potentially involving ROCK I

It plays a vital role in signal transduction and 
regulation within cardiomyocytes; involvement in 
the regulation of Cav 3.2 channels and stabil-
ization of HIF-1α may increase the risk of 
arrhythmia during ischemia

[48,49]

ERK1/2 It is involved in the regulation of 
biological processes such as cell 
growth, proliferation, differentiation 
and cell survival, and affects cell 
signaling and cell fate determination

ERK1/2 promotes cell survival 
and opposes apoptosis, yet 
sustained activation can 
ultimately trigger cell death. By 
activating the ERK1/2 pathway, 
it plays a pivotal role in 
determining cell fate

Signaling pathways involved in adaptive or 
adaptive remodeling; involved in cardiomyocyte 
hypertrophy and survival

[50,51]

It is involved in the regulation of 
biological processes such as cell 

Activation may elevate calcium 
levels, potentially initiating cell 

P2X6 gene is up-regulated in chronic heart failure, 
and its activation may be involved in the 

P2X6 [26]
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signaling, apoptosis and inflam-
matory response, and may play a 
role in neurotransmitter release and 
pain transmission

death mechanisms pathological process of chronic heart failure

CYTC The electron transport molecules in 
the mitochondrial respiratory chain 
are involved in cellular respiration 
and energy production, as well as 
regulating the process of apoptosis

During cellular stress, the 
release of cytochrome c from 
mitochondria initiates the 
apoptotic process

Phosphorylation at Thr50 increases with aging, 
which can inhibit cardiomyocyte apoptosis, 
especially apoptosis caused by 
hypoxia/reoxidation, and protect cardiac function

[52]

TNF-α It plays a crucial role in regulating 
biological processes encompassing 
inflammation, immune response, 
and apoptosis, thereby exerting 
significant influence on inflam-
matory conditions, immune 
disorders, and tumor progression

ATP triggers cell death by 
activating TNF-α and initiating 
apoptosis or necroptosis 
pathways. In response to ATP, 
immune cells produce TNF-α, 
thereby amplifying the cellular 
response

The TNF-α gene plays a key role in heart failure, 
promoting inflammation and cell damage. 
Increased expression of TNF-α in failing hearts 
correlates with disease severity and is a potential 
therapeutic target

[53]

P2RY5 It is involved in cell signaling, skin 
development, pigmentation and 
other biological processes, which 
may be related to hair follicle 
development and skin pigment 
distribution regulation

NA In the heart, it may be associated with inflam-
mation and Crohn’s disease activity index, and its 
expression level may be associated with cardiac 
dysfunction

[54]

P2RY14 It plays a pivotal role in regulating 
biological processes including 
immune and inflammatory 
responses, potentially contributing 
to the activation of immune cells 
and the release of inflammatory 
mediators

NA P2RY14 gene may be involved in the inflam-
matory process of ischemic acute kidney injury in 
the heart, and its expression changes are related to 
the development of AKI after cardiac surgery, 
which may be a potential therapeutic target for 
preventing and alleviating ischemic AKI

[55]

P2RY13 It regulates cellular immune 
response, participates in the 
regulation of inflammatory response 
and immune cell activation, and 
plays a significant role in immune 
regulation and inflammatory 
processes

P2Y13 may play a significant 
role in ADP receptors, primarily 
implicated in maintaining ATP 
homeostasis

Variations in the P2RY13 gene are associated with 
cardiovascular risk markers that may affect heart 
health

[56]

P2RY12 It plays a crucial role in platelet 
aggregation, thrombosis, and 
hemostasis, thereby contributing 
significantly to blood coagulation 
and vascular repair processes

P2Y12 may play a role in ADP 
receptors, mainly involved in 
ATP homeostasis

The receptor encoded by the P2RY12 gene 
regulates platelet aggregation in the heart, 
preventing clots from forming. The use of P2Y12 
inhibitors protects the heart and reduces the risk 
of myocardial infarction and reperfusion injury

[57]

P2RY6 It is integral to cell signaling and 
inflammation regulation, potentially 
contributing to the activation of 
immune cells and the secretion of 
inflammatory mediators

P2Y6 may play a role in calcium 
signaling processes

In hypertrophic cardiomyopathy, P2RY6 gene-
associated lncRNAs exhibit significant upregu-
lation and may regulate cardiac growth, serving 
as potential biomarkers and therapeutic targets for 
hypertrophic cardiomyopathy

[58]

AICD: Adenosine triphosphate-induced cell death; P2RX7: Purinergic receptor P2X7; CASP3: Caspase-3; PANX1: Pannexin-1; NLRP3: NOD-like receptor 
family pyrin domain-containing protein 3; CASP1: Caspase-1; P2RY1: P2Y purinoceptor 1; P2RY11: P2Y purinoceptor 11; ORAI1: Calcium release activated 
calcium channel protein 1; STIM1: Stromal interaction molecule 1; CASP8: Caspase-8; CASP9: Caspase-9; CASP7: Caspase-7; P2RX3: Purinergic receptor 
P2X3; NLRP1: NOD-like receptor family pyrin domain-containing protein 1; P2RX4: P2X purinoceptor 4; P2RX5: P2X purinoceptor 5; SAPK: Stress-
activated protein kinase; p38 MAPK: p38 mitogen-activated protein kinases; ASK1: Apoptosis signal regulating kinase 1; NOX2: NADPH oxidase 2; Bax: 
BCL2 associated X; MLC: Myosin light chain; ROCK I: Rho-associated, coiled-coil containing protein kinase 1; ERK1/2: Extracellular signal regulated 
kinase 1 and 2; P2X6: P2X purinoceptor 6; CYTC: Cytochrome c; TNF-α: Tumor necrosis factor alpha; P2RY5: P2R purinoceptor 5; P2RY14: P2R 
purinoceptor14; P2RY13: P2R purinoceptor 13; P2RY12: P2R purinoceptor 12; P2RY6: P2R purinoceptor 6; ATP: Adenosine triphosphate; CCI: Chronic 
constriction injury; IL: Interleukin; NA: Not available; SAPK: Stress-activated protein kinase; ROS: Reactive oxygen species; TNF: Tumor necrosis factor; 
LVAD: Left ventricular assist device; HAX-1: Hematopoietic lineage substrate-1-associated protein X-1; MLC: Myosin light chain; HIF-1α: Hypoxia-
inducible factor-1α; AKI: Acute kidney injury; lncRNA: Long noncoding RNA.

AICD IN CARDIOVASCULAR DISEASE
The coordinated activation of various gene networks involving energy usage, mitochondrial ATP synthesis, heart muscle 
contraction, and ion movement is essential for preserving normal heart function. Transcriptional regulators, such as 
estrogen-related receptors (ERRs), play pivotal roles in coordinating these gene networks, regulating cellular metabolism, 
and contraction mechanisms. ERRs, particularly ERRα and ERRγ, have emerged as critical regulators of cardiac function, 
as their deficiency leads to cardiac dysfunction, especially under increased workload conditions. Intriguingly, in diabetic 
cardiomyopathy, metabolic inflexibility is linked to increased mitochondrial FA oxidation and ERRγ expression, hinting 
at a possible role of persistent ERRγ expression in cardiogenic outcomes[27]. Furthermore, studies have revealed the 
regulatory role of pannexin-1 half-channel activity by eATP-sensitive P2X7Rs. Nonetheless, the precise mechanisms 
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governing how eATP-sensitive P2X7Rs regulate the opening and closing of Px1 half-channels remain largely elusive. 
Evidence suggests that under pathological conditions like ischemia, P2X7R activation leads to the opening of Px1 half-
channels, resulting in the influx of large amounts of extracellular Ca2+ and the subsequent release of intracellular ATP, 
ultimately culminating in cell death[28]. Furthermore, the seamless provision of energy is paramount for maintaining the 
normal contractile and relaxation functions of the heart. Therefore, metabolic disorders and impaired mitochondrial 
bioenergy, leading to disruptions in ATP production, are implicated in various heart diseases[59].

Myocardial IRI
IRI represents a prevalent and life-threatening clinical complication affecting various organs, including the heart, liver, 
kidneys, and brain[60]. Myocardial IRI is characterized by multifaceted mechanisms, including the generation of ROS, 
alterations in cellular osmotic balance, and inflammatory responses. Excessive calcium, variations in oxygen levels, and 
the generation of mitochondrial ROS collectively leads to the permanent opening of the mPTP, resulting in harmful 
effects. ROS generation and subsequent oxidative stress are key mechanisms responsible for cellular damage and 
dysfunction during cardiac IRI. These processes are intricately connected to NLRP3 inflammasome activation, which 
facilitates cell demise by enhancing the caspase-1 pathway and IL-18 secretion[15].

NLRP3 belongs to the nucleotide-binding domain (NOD)-like receptor family and is expressed by various immune and 
non-immune cells. When activated, NLRP3, together with apoptosis-associated speck-like protein containing a caspase 
recruitment domain (ASC) and procaspase-1, come together to create the NLRP3 inflammasome complex. This assembly 
regulates inflammation by cleaving pro-inflammatory cytokines IL-1β and IL-18, promoting pyroptotic cell death[61]. 
Significantly, targeting the NLRP3 inflammasome holds promise as a therapeutic strategy for ischemic stroke, with 
MCC950 demonstrating potential clinical efficacy[62]. Moreover, in hypertensive target organ damage, various triggers 
such as oxidative stress and inflammation activate the NLRP3 inflammasome, leading to the release of pro-inflammatory 
cytokines that worsen tissue damage and dysfunction[63].

Research using heterozygous SIRT6 knockout [SIRT6 (+/-)] mice and cardiomyocyte models in vitro has elucidated 
SIRT6’s role in modulating oxidative stress and myocardial damage during IRI. Partial loss of SIRT6 exacerbates 
myocardial damage, ventricular remodeling, and oxidative stress. In mice subjected to myocardial I/R, restoring SIRT6 
expression via direct cardiomyocyte injection of adenovirus vectors to reexpress it rescues the adverse effects of SIRT6 
knockout on ischemic hearts. Partial SIRT6 deletion hinders myocardial function recovery after I/R. Importantly, SIRT6 
increases AMP/ATP levels, activates the AMPK-FoxO3α axis, and boosts the expression of downstream antioxidant 
genes, such as manganese superoxide dismutase and catalase. This sequence mitigates intracellular oxidative stress, 
leading to the protective effect against ischemic heart damage. Thus, SIRT6 activation of FoxO3α in an AMP/ATP-driven, 
AMPK-dependent manner enhances antioxidant defense mechanisms and suppresses oxidative stress, thereby shielding 
the heart from IRI[14].

Furthermore, investigations have demonstrated that the reversal of calcium ion entry into cardiac cells can lead to a 
decrease in mechanical function, disruption of cell ultrastructure, depletion of ATP levels, increase in intracellular 
calcium ions, and initiation of cell apoptosis. Intracellular calcium overload influences various pathways involved in the 
apoptotic cascade. Exposure of the heart to a brief period without calcium followed by reintroduction of calcium results 
in significant structural and functional changes in the myocardium, a phenomenon commonly known as the “calcium 
paradox”. The heart experiencing the calcium paradox serves as an exemplary model for understanding the mechanisms 
of cellular injury caused by intracellular calcium overload at the cardiomyocyte level after reoxygenation following 
hypoxia or ischemia. A study aimed to determine whether cardiomyocytes undergo apoptosis after 5 minutes of calcium 
depletion followed by 30 minutes of calcium restoration. It is important to note that cardiomyocytes subjected to 30 
minutes of ischemia followed by 60 minutes of reperfusion have exhibited apoptotic cell death[64].

Diabetic cardiomyopathy
Diabetes is a common comorbidity in cardiovascular disease, heightening the heart’s susceptibility to IRI. As a result, 
individuals with diabetes often have a worse prognosis following acute myocardial infarction compared to those without 
diabetes. Importantly, diabetes exacerbates myocardial IRI by activating the NADPH oxidase pathway in an AMPK-
dependent manner, ultimately resulting in different types of programmed cell death[65,66]. Additionally, diabetic 
cardiomyopathy, a condition marked by heart muscle dysfunction regardless of coronary artery disease and 
hypertension, is worsened by diabetes. Mitochondrial dysfunction emerges as a key feature of diabetic cardiomyopathy, 
with mitochondria exerting varied effects on cardiomyocyte function, including oxidative stress, metabolic shifts, 
intracellular signaling, and cell death. Normally, damaged mitochondria undergo mitophagy, a process that breaks down 
dysfunctional mitochondria for lysosomal degradation. However, impaired mitophagy leads to the buildup of dysfunc-
tional mitochondria, resulting in cardiomyocyte death[60,67].

Type 2 diabetes mellitus (T2DM) is a rapidly spreading condition, with cardiovascular issues being the leading cause of 
death among diabetic patients. Prolonged high blood sugar levels impair vascular function by affecting the function of 
vascular smooth muscle cells (VSMCs) and intracellular calcium dynamics. To investigate intracellular calcium signaling 
in VSMCs from Zucker diabetic obese rats, Fura-2/AM calcium imaging was performed. The findings revealed that 
T2DM reduces calcium release from the sarcoplasmic reticulum while increasing the activity of store-operated channels. 
Additionally, key calcium export mechanisms (SERCA, PMCA, and NCX) show heightened activity during the initial 
stages of ATP-induced calcium transients. However, during later stages, calcium entry increases alongside a decrease in 
NCX, SERCA, and PMCA activity, resulting in a shortened decay time of ATP-induced calcium transients during the 
early phase and an increased amplitude during the subsequent plateau. Elevated cytoplasmic calcium levels in VSMCs 
may contribute to vascular dysfunction associated with T2DM[68].
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Heart damage due to sepsis
Sepsis stands as a prominent global cause of mortality and morbidity. Autophagy is a cellular process that facilitates the 
degradation and recycling of damaged organelles and proteins, and it is posited to confer a protective effect against 
sepsis-induced myocardial dysfunction (SIMD). Experimental models of septicemia were established in male Sprague-
Dawley rats via cecal ligation and puncture. Assessment of cardiac damage involved examining serum markers, echocar-
diographic parameters, histological analysis with hematoxylin and eosin staining, evaluating cardiac mitochondrial 
health using transmission electron microscopy, measuring ATP and mitochondrial DNA levels, and quantifying cardiac 
oxidative stress using REDOX markers in cardiac tissue samples. To assess gene and protein expression levels, real-time 
polymerase chain reaction and western blotting techniques were utilized. Chromatin co-immunoprecipitation and 
quantitative real-time polymerase chain reaction were utilized to analyze the binding of histone deacetylase (HDAC) to 
the phosphatase and tensin homolog (PTEN) promoter and the histone acetylation level of the PTEN promoter.

The results revealed that valproic acid (VPA) alleviated mitochondrial impairment, oxidative stress, and inflammation 
in septic rats, thereby reducing SIMD by enhancing myocardial autophagy levels. This effect was mediated by VPA-
induced autophagy, which downregulated PTEN expression through HDAC1 and HDAC3 in septic rat myocardial 
tissue. Furthermore, VPA promoted myocardial autophagy by upregulating PTEN expression and inhibiting the protein 
kinase B/mammalian target of rapamycin pathway, thereby ameliorating SIMD[69]. Moreover, research has highlighted 
the protective effects of irisin against both acute and chronic myocardial injury. Treatment with irisin mitigated 
cardiomyocyte death and myocardial dysfunction induced by lipopolysaccharide (LPS). Mechanistically, LPS exposure 
induced mitochondrial oxidative damage, resulting in ATP depletion in cardiomyocytes and activating apoptosis through 
caspase. Conversely, irisin preserved mitochondrial function by inhibiting LPS-induced mitochondrial fission mediated 
by dynamin-related protein 1. Notably, irisin restored the c-Jun N-terminal kinase-large tumor suppressor kinase 2 
signaling pathway associated with dynamin-related protein 1-mediated mitochondrial fission activation induced by LPS, 
suggesting its potential as a promising therapeutic approach for SIMD[70]. Furthermore, exogenous carbon monoxide can 
regulate mitochondrial energy metabolism by influencing the expression of peroxisome proliferator-activated receptor-
gamma coactivator 1-alpha, nuclear respiratory factor 1, and mitochondrial transcription factor A. As a result, it 
improved cardiac function in sepsis[71].

Hypertrophic cardiomyopathy
M-iPSC-CMs were obtained from a patient harboring a mitochondrial 16S rRNA gene (MT-RNR2). Hypertrophic 
cardiomyopathy (HCM) represents a condition characterized by cardiac hypertrophy, diastolic dysfunction, and sudden 
cardiac death, particularly prevalent among young individuals. The involvement of mitochondrial DNA mutations in 
HCM pathogenesis has been recognized. Induced pluripotent stem cell-derived cardiomyocytes have diminished 
mitochondrial protein levels, thereby resulting in mitochondrial dysfunction and ultrastructural aberrations. Simultan-
eously, the mutation resulted in a decrease in the ATP/ADP ratio and mitochondrial membrane potential, ultimately 
leading to an increased intracellular Ca2+ concentration, a characteristic feature of various HCM-specific electro-
physiological abnormalities[72]. Furthermore, phosphorus-31 magnetic resonance spectroscopy studies conducted in rats 
revealed a significant impairment in cardiac energy metabolism, characterized by a reduced phosphocreatine to ATP ratio 
(-31%, P < 0.05)[73]. The MYBPC3 gene, which encodes myocardial myosin-binding protein C, stands as the predominant 
genetic factor underlying HCM. Remarkably, myocardial fibrosis (MF) emerged as a pivotal player in HCM development. 
Nevertheless, the precise mechanism by which mutant MYBPC3 contributes to MF remains unclear. A model featuring 
R495Q mutant pigs was established using cytosine base editing technology, leading to early onset MF shortly after birth. 
Intriguingly, the “heart-specific” MYBPC3 gene was transcribed and expressed at the protein level not only in cardiac 
fibroblasts across different species but also in NIH3T3 fibroblasts. CRISPR-mediated ablation of Mybpc3 in NIH3T3 
fibroblasts triggered nuclear factor κB signaling pathway activation, resulting in enhanced expression of transforming 
growth factor-beta 1 and other proinflammatory genes. Increased levels of transforming growth factor-beta 1 led to the 
upregulation of hypoxia-inducible factor-1 alpha and its downstream glycolytic targets, such as GLUT1, PFK, and LDHA. 
This resulted in enhanced aerobic glycolysis and elevated ATP production rates, accelerating cardiac fibroblast activation 
and ultimately contributing to HCM progression[74].

Potential link between AICD and arrhythmia
Approximately one-third of individuals afflicted with mitochondrial disease experience some manifestation of cardiomy-
opathy, often characterized by symptoms such as HF and arrhythmias. The primary source of ATP production occurs via 
oxidative phosphorylation of FAs and carbohydrates within the mitochondrial respiratory chain[75]. Mitochondria serve 
as the principal ATP suppliers, crucial for fulfilling the heart muscle’s energy requirements to sustain continuous 
electrical activity and contractile function. Emerging evidence suggests that mitochondrial dysfunction can deleteriously 
affect cardiac electrical function by reducing ATP synthesis and triggering excessive ROS production. This disrupts 
intracellular ion homeostasis and membrane excitability, ultimately increasing the risk of arrhythmias[76]. Furthermore, 
ventricular fibrillation is closely associated with myocardial ischemia. Sudden cardiac death can be the initial clinical 
presentation of myocardial ischemia or infarction in approximately 20%-25% of patients. Fatal arrhythmias often result 
from a complex sequence of pathophysiological abnormalities, arising from intricate interactions among coronary 
vascular events, myocardial injury, changes in autonomic tone, metabolic conditions, and cardiac ion status. The timing 
of ischemic onset also plays a crucial role, with a substantial surge in ventricular arrhythmias typically observed within 
the first few minutes, persisting for about 30 minutes[77].

In large animal hearts, regional ischemia generally induces two distinct stages of ventricular arrhythmia. The first stage 
(1A), occurring around 5 to 7 minutes after perfusion cessation, is characterized by membrane depolarization, slight 
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acidification in intracellular and extracellular spaces, and minor disturbances in membrane potential. The subsequent 
stage of ventricular arrhythmia (1B) emerges between 20 and 30 minutes post-perfusion cessation, during which 
ischemia-induced changes in K+ and pH stabilize. The onset of arrhythmia in this stage is presumed to be associated with 
electrolytic coupling between cells, evident from the rapid rise in tissue impedance preceding arrhythmia. Research has 
demonstrated that interventions like ischemic preconditioning can attenuate the effects of subsequent ischemia by 
postponing the emergence of electrolytic coupling between cells, thereby delaying the occurrence of ischemia-induced 
arrhythmias[78]. Additionally, acute ischemia triggers the opening of K(ATP) channels, inducing cardiomyocyte acidosis 
and hypoxia, resulting in significant repolarization dispersion across the boundary region. Concurrently, abnormalities in 
intracellular Ca2+ handling manifest within the initial minutes of acute myocardial ischemia, potentially serving as a 
significant contributor to arrhythmogenesis in individuals with coronary artery disease[77].

AICD IS A PROMISING THERAPEUTIC TARGET IN THE CARDIOVASCULAR SYSTEM
Due to its crucial role in heart disease pathogenesis, AICD holds significant promise as a therapeutic target in the 
cardiovascular field. Here, we present an overview of diverse small molecules that impede AICD pathways and discuss 
their potential applications across various heart disease models[30,36,63,79-109] (Table 2). Persistent low-level inflam-
mation is a fundamental factor in various diseases, particularly cardiovascular conditions. While efforts to address 
inflammation in cardiovascular disease are still in their early stages, they are an area of significant interest. P2X7R, an 
ATP-activated ion channel, stands out as a promising target for the development of new drugs, primarily involved in 
regulating inflammatory responses and cell death mechanisms[110]. Due to its pivotal function in inflammation and 
immune responses, P2X7R stands out as a promising target for treating inflammatory conditions. Research has shown 
that Rhein hinders ATP/BZATP-triggered calcium increase, pore formation, ROS production, reduced phagocytosis, IL-
1β release, and cell death by blocking P2X7Rs in rat peritoneal macrophages[111]. Stimulation of P2X7 and the resulting 
increase in IL-1β and IL-18 levels are linked to the development of several cardiovascular conditions, such as high blood 
pressure, artery hardening, tissue damage from restricted blood flow followed by restoration, and heart weakening. 
However, medications that block P2X7 have shown effectiveness in lowering blood pressure in individuals with 
hypertension and slowing down artery hardening in experimental animals. Trials in clinical settings have revealed that 
drugs inhibiting IL-1β and IL-18 can notably lower the likelihood of major negative heart events, including heart attacks 
and HF[79]. Additionally, P2X7 stands out among P2X receptors because it can operate as both a typical receptor 
activated by a molecule and a channel that allows substances to pass through, causing cell death when exposed to ATP 
for extended periods[112]. Furthermore, mild disruption of mitochondrial coupling provides protective effects against 
various diseases. However, identifying mild disruption induced by chemical agents remains uncertain. Research has 
shown that typical chemical agents such as FCCP, niacinamide, and BAM15 induce two-phase changes in STAT3 activity 
in heart muscle cells - boosting STAT3 at low concentrations while suppressing it at high concentrations, albeit with 
different ranges of doses. Low doses of these agents activate STAT3 by slightly increasing mitochondrial ROS production 
and subsequently activating JAK/STAT3 in heart muscle cells. Conversely, high doses of these agents lead to STAT3 
suppression, reduced ATP production, and heart muscle cell death. Excessive disruption triggers STAT3 inhibition 
through excessive mitochondrial ROS production and reduced AMPK activation induced by ATP. Low doses of 
mitochondrial uncoupling agents alleviate doxorubicin-induced STAT3 inhibition and heart muscle cell death, with 
STAT3 activation playing a crucial role in the cardiac protective effects of these agents. Mild disruption of mitochondrial 
coupling in heart muscle cells by these agents is characterized by STAT3 activation and increased ATP levels. Conversely, 
excessive disruption leads to STAT3 inhibition, decreased ATP levels, and cellular damage. Developing mitochondrial 
uncoupling agents with an optimal dose range to induce mild disruption represents a promising approach for protecting 
the heart[22].

Studies indicate that simultaneous exposure to LPS and ATP leads to pronounced ASC speck formation, caspase-1 
activation, cell death, and ROS production. Inhibiting the ATP-gated purinergic receptor P2X7 significantly reduces 
caspase-1 activation, while sodium vanadate effectively induces caspase-1 activation. Moreover, adjunctive therapy with 
ethanol reverses caspase-1 activation, ASC speck formation, and ROS production triggered by LPS and ATP. In HepG2 
cells, both LPS and ATP signaling are required for ASC speck formation and caspase-1 induction. Additionally, P2X7 may 
play a critical role in inflammasome activation, and ethanol’s acute effects on the inflammasome may involve reduced 
ROS production, thereby enhancing tyrosine phosphatase activity[113].

Moreover, another investigation demonstrated that CORM-3 effectively impedes NLRP3 inflammasome activation by 
obstructing the interaction between NLRP3 and the adaptor protein ASC, thereby alleviating myocardial dysfunction in 
septic mice[15]. Moreover, when J774 cells are stimulated with LPS and ATP, they display characteristics akin to 
pyroptosis, including increased expression of IL-1β mRNA and protein, activation of caspase-1, assembly of the inflam-
masome, and cell death. Cathelicidin LL-37 (LL-37) effectively inhibits LPS/ATP-induced IL-1β expression, caspase-1 
activation, inflammasome assembly, and cell death. Notably, LL-37 disrupts the binding of LPS to target cells and reduces 
ATP-induced/P2X7-mediated caspase-1 activation. These findings suggest that LL-37 can counteract LPS activity and 
suppress P2X7 response to ATP, thereby mitigating LPS/ATP-induced pyroptosis. Hence, leveraging LL-37’s dual actions 
on LPS binding and P2X7 activation may present novel strategies for managing sepsis[114].

P2X7R assumes a pivotal function in diverse pathological states linked to tissue damage and inflammation, rendering 
human P2X7R an appealing therapeutic target. Through evaluation of human P2X7R-mediated Ca2+ responses, three 
compounds (C23, C40, and C60) were identified from a pool of 73 top-ranked compounds. These compounds underwent 
additional characterization utilizing Ca2+ imaging, patch clamp current recording, YO-PRO-1 uptake, and propyl iodide 
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Table 2 Summary of small-molecule modulators in adenosine triphosphate-induced cell death-related diseases

Drug Mechanism Targets Ref.

P2X7 antagonist Inhibit P2RX7 function High blood pressure; atherosclerosis [79]

IL-1β and IL-18 inhibitors Inhibit the release of IL-1β and IL-18 Myocardial infarction and heart failure [79]

Caspase-3 inhibitors Inhibit the proteolysis of caspase-3 Reduces or reverses heart failure [30]

S-propranolol Decreased caspase-3 activity I/R injury [80]

Spirolactone Inhibits alpha-adrenergic vasoconstriction in the arteries Drug-resistant hypertension [81]

Prosulfanilone and carbenolone Blocking thrombin-induced calcein outflow and 
reducing Ca2+ inflow, ATP release, platelet aggregation, 
and thrombosis at the in vitro arterial shear rate

Arterial thrombus [82]

Curcumin, resveratrol, 
notoginseng lactone and allicin

Inhibition of NLRP3 inflammasome Hypertension TOD [63]

Pubescenoside A active 
compound

It inhibited NLRP3 inflammatory activation and 
induced Nrf2 signaling pathway

I/R injury [83]

Resveratrol (PIC) TG storage and caspase 1 activity were inhibited Atherosclerosis

MRS-2179 Inhibit platelet aggregation Thrombotic syndrome [84,85]

MRS2500 Inhibit P2RY1 Thrombus [86]

NF157 Inhibit inositol phosphate accumulation I/R injury [87]

SKF96365 The entry of orai1 Ca2+ was inhibited Atherosclerosis [88]

ML9 Inhibition of STIM1 Hypertrophy and Ca2+ overload due to 
I/R; cardiomyocyte death

[89]

TDCPP Decreased STIM1 expression of and increased GSK3β 
phosphorylation

I/R injury [90]

MMPSI Selective inhibition of caspase 3/7 Myocardial ischemic injury [36]

Acetyl-tyr-val-ala-asp chloro-
methyl ketone

They blocked caspase activation Myocardial injury induced by ischemia 
and reperfusion; myocardial infarction

[91]

Hypericin Up-regulation of autophagy after myocardial infarction Myocardial infarction [92]

MRS-2339 Activated the heart P2X receptor Heart failure [93]

Propofol Induced autophagy I/R injury [94]

Carvedilol Novel vasodilator beta-adrenergic receptor antagonist 
and potent antioxidant

Myocardial I/R induced apoptosis [95]

Midazolam Inhibit p38 MAPK Myocardial I/R injury [96]

Ulinastatin Inhibit inflammation, oxidative stress and apoptosis Chronic heart failure [97]

Kaempferol Inhibition of ASK1 Cardiac hypertrophy [98]

KN-93 Inhibition of NOX2 Cardiac remodeling and heart failure [99]

Acacetin Inhibit oxidative stress, inflammation and apoptosis Diabetic cardiomyopathy [100]

CETP inhibitor Elevated phosphorylation levels of vascular myosin 
light chain and myosin phosphatase target subunit 1, a 
protein that promotes contractility, along with 
enhanced reactive ROS production

Hypertension [101]

Fasudil ROCKI inhibition Coronary vasospasm, angina pectoris, 
hypertension, heart failure

[102,103]

Isosteviol (STV) ERK1/2 is selectively activated in cells exposed to stress Myocardial ischemia-reperfusion [103]

Adriamycin (DOX) Induced oxidative stress Heart failure [105]

Plasminogen activator inhibitor 
1

Release the pro-inflammatory cytokine TNF-α Thromboembolism complication [106]

Rosuvastatin MG53 up-regulation was induced Myocarditis [107]

Na+/H+ exchanger 1 Catalyze increased intracellular Na uptake Hypertrophy of heart; heart failure [108]

ST-segment elevation myocardial Prasugrel Inhibit P2RY12 [109]
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infarction following primary percutaneous 
coronary intervention

P2RX7: Purinergic receptor P2X7; IL: Interleukin; I/R: Ischemia/reperfusion; ATP: Adenosine triphosphate; NLRP3: NOD-like receptor family pyrin 
domain-containing protein 3; TOD: Target organ damage; Nrf2: NF-E2-related factor-2; P2RY1: P2Y purinoceptor 1; STIM1: Stromal interaction molecule 1; 
GSK: Glycogen synthase kinase; MAPK: Mitogen-activated protein kinases; ASK1: Apoptosis signal regulating kinase 1; NOX2: NADPH oxidase 2; ROS: 
Reactive oxygen species; ROCK I: Rho-associated, coiled-coil containing protein kinase 1; ERK1/2: Extracellular signal regulated kinase 1 and 2; TNF: 
Tumor necrosis factor.

cell death assay. The findings revealed that all three compounds effectively inhibited BZATP-induced Ca2+ response and 
demonstrated potent protective effects against AICD[115]. Moreover, the anti-inflammatory effects of P2X7R antagonists 
stem from their ability to inhibit P2X7R-mediated secretion of pro-inflammatory cytokines from activated macrophages. 
P2X7R antagonists reliably hinder ATP-triggered casein release, a phenomenon not observed in P2X7R(-/-) mouse 
macrophages and unrelated to cellular apoptosis. Nevertheless, our findings indicate that P2X7R activation may 
independently contribute to tissue injury by facilitating protease release, distinct from its pro-inflammatory actions 
mediated by IL-1 cytokines[116]. Furthermore, recent studies have shown that exposure of HeLa cells to interferon-
gamma leads to increased expression of P2X7 mRNA and full-length protein, altering ATP-dependent calcium flux and 
rendering the cells susceptible to ATP-induced apoptosis. Importantly, P2X7 antagonists hold promise in attenuating this 
apoptotic reaction[117].

CONCLUSION
In summary, AICD plays a prominent role in the pathogenesis of cardiovascular disease, contributing to tissue damage, 
inflammation, and adverse remodeling. Understanding the molecular and metabolic landscape of AICD provides 
valuable insights into disease mechanisms and identifies potential therapeutic targets. Future research efforts should 
focus on addressing the limitations, advancing our understanding of these pathways, and developing targeted 
interventions to improve clinical outcomes in cardiovascular patients. Continued exploration of small molecules, 
biologics, and gene-based therapies targeting AICD pathways may lead to the development of innovative treatments for 
cardiovascular diseases. Conducting well-designed clinical trials to evaluate the efficacy and safety of novel therapeutic 
interventions targeting AICD is essential for translating preclinical findings into clinical practice.
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